12,819 research outputs found
Microwave responses of the western North Atlantic
Features and objects in the Western North Atlantic Ocean - the Eastern Seaboard of the United States - are observed from Earth orbit by passive microwaves. The intensities of their radiated flux signatures are measured and displayed in color as a microwave flux image. The features of flux emitting objects such as the course of the Gulf Stream and the occurrence of cold eddies near the Gulf Stream are identified by contoured patterns of relative flux intensities. The flux signatures of ships and their wakes are displayed and discussed. Metal data buoys and aircraft are detected. Signal to clutter ratios and probabilities of detection are computed from their measured irradiances. Theoretical models and the range equations that explain passive microwave detection using the irradiances of natural sources are summarized
Microwave hydrology: A trilogy
Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest
Brain natriuretic peptide and NT-proBNP levels reflect pulmonary artery systolic pressure in trekkers at high altitude.
Our objective was to evaluate the utility of the natriuretic peptides BNP (brain natriuretic peptide) and NT-proBNP as markers of pulmonary artery systolic pressure (PASP) in trekkers ascending to high altitude (HA). 20 participants had BNP and NT-proBNP assayed and simultaneous echocardiographic assessment of PASP performed during a trek to 5150 m. PASP increased significantly (p=0.006) with ascent from 24+/-4 to 39+/-11 mm Hg at 5150 m. At 5150 m those with a PASP>/=40 mm Hg (n=8) (versus those with PASP/=400 pg/ml) rise in NT-proBNP at 5150 m (n=4) PASP was significantly higher: 45.9+/-7.5 vs. 32.2+/-6.2 mm Hg (p=0.015). BNP and NT-proBNP may reflect elevated PASP, a central feature of high altitude pulmonary oedema, at HA
Stressed detector arrays for airborne astronomy
The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed
Recommended from our members
Comparative study of design: application to Engineering Design
A recent exploratory study examines design processes across domains and compares them. This is achieved through a series of interdisciplinary, participative workshops. A systematic framework is used to collect data from expert witnesses who are practising designers across domains from engineering through architecture to product design and fashion, including film production, pharmaceutical drugs, food, packaging, graphics and multimedia and software. Similarities and differences across domains are described which indicate the types of comparative analysis we have been able to do from our data. The paper goes further and speculates on possible lessons for selected areas of engineering design which can be drawn from comparison with processes in other domains. As such this comparative design study offers the potential for improving engineering design processes. More generally it is a first step in creating a discipline of comparative design which aims to provide a new rich picture of design processes
The Local Environments of Core-Collapse SNe within Host Galaxies
We present constraints on core-collapse supernova progenitors through
observations of their environments within host galaxies. This is achieved
through 2 routes. Firstly, we investigate the spatial correlation of supernovae
with host galaxy star formation using pixel statistics. We find that the main
supernova types form a sequence of increasing association to star formation.
The most logical interpretation is that this implies an increasing progenitor
mass sequence going from the supernova type Ia arising from the lowest mass,
through the type II, type Ib, and the supernova type Ic arising from the
highest mass progenitors. We find the surprising result that the supernova type
IIn show a lower association to star formation than type IIPs, implying lower
mass progenitors. Secondly, we use host HII region spectroscopy to investigate
differences in environment metallicity between different core-collapse types.
We find that supernovae of types Ibc arise in slightly higher metallicity
environments than type II events. However, this difference is not significant,
implying that progenitor metallicity does not play a dominant role in deciding
supernova type.Comment: to appear in Proceedings of IAU 279 "Death of Massive Stars:
Supernovae and Gamma-ray Bursts
- …
