765 research outputs found

    Population inversion of driven two-level systems in a structureless bath

    Get PDF
    We derive a master equation for a driven double-dot damped by an unstructured phonon bath, and calculate the spectral density. We find that bath mediated photon absorption is important at relatively strong driving, and may even dominate the dynamics, inducing population inversion of the double dot system. This phenomenon is consistent with recent experimental observations.Comment: 4 Pages, Added Reference [30] to Dykman, 1979, available at http://www.pa.msu.edu/people/dykman/pub/Sov.J.LowTemp.Phys_5.pd

    Measurement-based approach to entanglement generation in coupled quantum dots

    Get PDF
    Measurements provide a novel mechanism for generating the entanglement resource necessary for performing scalable quantum computation. Recently, we proposed a method for performing parity measurements in a coupled quantum dot system. In this paper we generalise this scheme and perform a comprehensive analytic and numerical study of environmental factors. We calculate the effects of possible error sources including non-ideal photon detectors, ineffective spin-selective excitation and dot distinguishability (both spatial and spectral). Furthermore, we present an experimental approach for verifying the success of the parity measurement

    Pulse-induced acoustoelectric vibrations in surface-gated GaAs-based quantum devices

    Full text link
    We present the results of a numerical investigation which show the excitation of acoustoelectric modes of vibration in GaAs-based heterostructures due to sharp nano-second electric-field pulses applied across surface gates. In particular, we show that the pulses applied in quantum information processing applications are capable of exciting acoustoelectric modes of vibration including surface acoustic modes which propagate for distances greater than conventional device dimensions. We show that the pulse-induced acoustoelectric vibrations are capable of inducing significant undesired perturbations to the evolution of quantum systems.Comment: To be published in Phys. Rev.

    Psilocybin occasioned mystical‐type experiences

    Get PDF
    Objective Research into psychedelic therapy models has shown promise for the treatment of specific psychiatric conditions. Mystical‐type experiences occasioned by psilocybin have been correlated with therapeutic benefits and long‐term improvements in positive mental outlook and attitudes. This article aims to provide an overview of the topic, highlight strengths and weaknesses in current research, generate novel perspectives and discussion, and consider future avenues for research. Design This narrative review was designed to summarise and assess the state of research on psilocybin occasioned mystical‐type experiences and applications for the treatment of specific psychiatric conditions. Results Contemporary methods on the quantification of mystical‐type experiences and their acute subjective effects are discussed. Recent studies provide some understanding of the pharmacological actions of psychedelics although the neurological similarities and differences between spontaneous and psychedelic mystical‐type experiences are not well described. Applicability to modern clinical settings is assessed. Potential novel therapeutic applications include use in positive psychology interventions in healthy individuals. Conclusions Since 2006 significant advancements in understanding the therapeutic potential of psilocybin‐assisted psychotherapy have been made; however, more work is required to understand the neuromechanistic processes and applicability in modern clinical settings. Despite promising results in recent studies, funding issues for clinical trials, legal concerns and socio‐cultural resistance provide a counterpoint to experimental evidence

    High-efficiency cross-phase modulation in a gas-filled waveguide

    Get PDF
    Strong cross-Kerr nonlinearities have been long sought after for quantum information applications. Recent work has shown that they are intrinsically unreliable in traveling-wave configurations: cavity configurations avoid this, but require knowledge of both the nonlinearity and the loss. Here we present a detailed systematic study of cross-phase modulation and absorption in an Rb vapor confined within a hollow-core photonic crystal fiber. Using a two-photon transition, we observe phase modulations of up to pi rad with a signal power of 25 mu W, corresponding to a nonlinear Kerr coefficient, n(2), of 0.8 x 10(-6) cm(2)/W, or 1.3 x 10(-6) rad per photon

    Dynamical steady states in driven quantum systems

    Get PDF
    We derive dynamical equations for a driven, dissipative quantum system in which the environment-induced relaxation rate is comparable to the Rabi frequency, avoiding assumptions on the frequency dependence of the environmental coupling. When the environmental coupling varies significantly on the scale of the Rabi frequency, secular or rotating wave approximations break down. We avoid these approximations, yielding dynamical steady states which account for the interaction between driven quantum dots and their phonon environment. The theory, which is motivated by recent experimental observations, qualitatively and quantitatively describes the transition from asymmetric unsaturated resonances at weak driving to population inversion at strong driving

    The Effect of Stochastic Noise on Quantum State Transfer

    Full text link
    We consider the effect of classical stochastic noise on control laser pulses used in a scheme for transferring quantum information between atoms, or quantum dots, in separate optical cavities via an optical connection between cavities. We develop a master equation for the dynamics of the system subject to stochastic errors in the laser pulses, and use this to evaluate the sensitivity of the transfer process to stochastic pulse shape errors for a number of different pulse shapes. We show that under certain conditions, the sensitivity of the transfer to the noise depends on the pulse shape, and develop a method for determining a pulse shape that is minimally sensitive to specific errors.Comment: 10 pages, 9 figures, to appear in Physical Review

    Life history evolution, species differences and phenotypic plasticity in hemiparasitic eyebrights (Euphrasia)

    Get PDF
    Premise of the study: Species delimitation in parasitic organisms is challenging as traits used in the identification of species are often plastic and vary depending on the host. Here, we use species from a recent radiation of generalist hemiparasitic Euphrasia to investigate trait variation and trait plasticity. We test whether Euphrasia species show reliable trait differences, investigate whether these differences correspond to life history trade-offs between growth and reproduction, and quantify plasticity in response to host species. Methods: We perform common garden experiments to evaluate trait differences between eleven Euphrasia taxa grown on a common host, document phenotypic plasticity when a single Euphrasia species is grown on eight different hosts, and relate our observations to trait differences recorded in the wild. Key results: Euphrasia exhibit variation in life history strategies; some individuals transition rapidly to flower at the expense of early season growth, while others invest in vegetative growth and delay flowering. Life history differences are present between some species, though many related taxa lack clear-cut trait differences. Species differences are further blurred by phenotypic plasticity—many traits are plastic and change with host type or between environments. Conclusions: Phenotypic plasticity in response to host and environment confounds species delimitation in Euphrasia. When grown in a common garden environment it is possible to identify some morphologically distinct taxa, though others represent morphologically similar shallow segregates. Trait differences present between some species and populations demonstrates the rapid evolution of distinct life history strategies in response to local ecological conditions."Manyhosts.csv" contains morphological measurements from one Euphrasia arctica population from North Berwick, Scotland, grown with eight hosts. "Manyspecies.csv" contains morphological measurements of five Euphrasia species and six natural Euphrasia hybrids grown on a single host, Trifolium repens. "Earlylate.csv" contains repeated growth measurements at different times of year, used in correlations of height at end of season. "Wildcommon.csv" contains Euphrasia species grown in the common garden experiment and wild collected plants for trait comparisons.Data collection is detailed in the associated manuscript. Post collection data processing can be viewed at: https://github.com/Euphrasiologist/phenotypic_plasticity_euphrasi

    Raman phonon emission in a driven double quantum dot

    Get PDF
    The compound semiconductor gallium-arsenide (GaAs) provides an ultra-clean platform for storing and manipulating quantum information, encoded in the charge or spin states of electrons confined in nanostructures. The absence of inversion symmetry in the zinc-blende crystal structure of GaAs however, results in a strong piezoelectric interaction between lattice acoustic phonons and qubit states with an electric dipole, a potential source of decoherence during charge-sensitive operations. Here we report phonon generation in a GaAs double quantum dot, configured as a single- or two-electron charge qubit, and driven by the application of microwaves via surface gates. In a process that is a microwave analogue of the Raman effect, phonon emission produces population inversion of the two-level system and leads to rapid decoherence of the qubit when the microwave energy exceeds the level splitting. Comparing data with a theoretical model suggests that phonon emission is a sensitive function of the device geometry
    corecore