
Dynamical Steady States in Driven Quantum Systems

T.M. Stace,1,* A. C. Doherty,2 and D. J. Reilly2

1ARC Centre for Engineered Quantum Systems, University of Queensland, Brisbane 4072, Australia
2ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney,

Sydney, New South Wales 2006, Australia
(Received 4 June 2013; published 30 October 2013)

We derive dynamical equations for a driven, dissipative quantum system in which the environment-

induced relaxation rate is comparable to the Rabi frequency, avoiding assumptions on the frequency

dependence of the environmental coupling. When the environmental coupling varies significantly on the

scale of the Rabi frequency, secular or rotating wave approximations break down. We avoid these

approximations, yielding dynamical steady states which account for the interaction between driven

quantum dots and their phonon environment. The theory, which is motivated by recent experimental

observations, qualitatively and quantitatively describes the transition from asymmetric unsaturated

resonances at weak driving to population inversion at strong driving.
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Driven, dissipative quantum systems are ubiquitous in
physics and chemistry, forming the basis for understanding
the interaction of light and matter in phenomena ranging
from solid-state quantum operations [1,2] to photosynthe-
sis [3]. The basic physics of a dissipative, driven few-level
system is understood via the Rabi or Jaynes-Cummings
models for a driven two-level atom [4] coupled to a dis-
sipative bosonic environment, leading to the optical Bloch
equations [5]. Generically, the system response depends on
the two-level energy splitting @�, the Rabi frequency �,
the environment-induced decay rate �, and the driving
frequency !0. When � � �, �, various approximations
lead to Markovian descriptions of the dynamics, in which
correlations between the system and its external environ-
ment are very short lived. Markovian models make distinct
predictions, depending on the relative size of � and �. If
� � � � �, the weak driving produces small Lorentzian
resonances in the system response, which are symmetric
in the detuning ~� ¼ ��!0 [6–8]. If � � � � �, the
strong driving saturates the resonance, and excitation chan-
nels that are available when !0 >� lead to asymmetric
resonances [1,9–11].

Experimentally, it is quite possible to enter a regime in
which neither of these limits is valid. In particular, if � is
large enough that the spectral density (which ultimately
determines decay rates) varies substantially over a fre-
quency range of bandwidth �, we can no longer assume
a single decay rate and must account for coherences
between different decay channels. Driven, semiconducting
double-quantum-dot (DQD) devices, which are promising
building blocks for a variety of new quantum technologies
[12], can be driven very strongly [8,13], so they naturally
fall into this category. In these devices, for which the
electron-phonon coupling is significant [2,8,14–16], � or
� may become large enough that Markovian approxima-
tions fail [17–19]. This is particularly important now that

dynamical-decoupling techniques have managed to sup-
press decoherence from low-frequency noise (e.g., nuclear
spins) [20], leaving residual electron-phonon coupling dur-
ing fast quantum gate pulses as a potentially significant
source of decoherence. Similar issues arise in supercon-
ducting [21,22] and photosynthetic systems [23,24], where
the spectral density may vary substantially over a narrow
bandwidth.
To address the limitations above, in this Letter, we derive

a master equation that remains valid over the entire range
of driving strengths, avoiding a number of conventional
approximations. We first develop the general approach,
which we then apply to the specific case of a DQD coupled
to a phonon bath. Finally, we compute the response of the
DQD to driving and discuss the qualitatively new features
that emerge. These results replicatemany of the phenomena
observed in very recent experimental observations in a
microwave-driven DQD [13].
We assume the HamiltonianH ¼ HS þHI þHB for the

driven system, interaction, and harmonic bath, whereHI ¼
ZSð

P
qg

�
qa

y
q þ H:c:Þ, ZS is a system operator, ayq is the

bosonic bath creation operator for mode q, and gq is the

system-bath coupling strength [5,11]. Since the system is
driven, HS has periodic time dependence. We transform to
an interaction picture with respect to H0 ¼ HD þHB,
where HD acts trivially on the bath and has an associated
set of Floquet eigenfrequencies W [25], giving HðtÞ ¼
HSðtÞ þHIðtÞ, where HSðtÞ ¼

P
!2Wh!e

i!t,

HIðtÞ ¼ ZSðtÞ
X
q

g�qa
y
qe

i!qt þ H:c:; (1)

ZSðtÞ ¼ P
!2WP!e

i!t, and the Fourier coefficients h! and

P! satisfy h�! ¼ hy! and P�! ¼ Py
!. We note that it is

common to choose the dressing Hamiltonian HD ¼ HS so
that HSðtÞ ¼ 0; however, we avoid this in order to later
remove bath-induced dispersive shifts.
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To derive the system dynamics, we iterate the
von Neumann equation for the joint system-bath density
matrix R, then trace over the bath [5]

_�ðtÞ¼�i½HSðtÞ;�ðtÞ��TrB
Z t

0
dt0fHIðtÞ;½HIðt0Þ;Rðt0Þ�g;

where � ¼ TrBR is the reduced system density matrix.
Various approximations are often invoked to turn the inte-
gral into a convolution with a rapidly decaying kernel,
yielding Markovian evolution [5]. Instead, we take a
Laplace transform which we solve using an ansatz con-
taining the relevant poles of the problem. Truncating the
set of poles yields tractable approximations. The Laplace
transform is (see the Supplemental Material [26])

s ��s��ð0Þ¼�i
X

!02W

½h!0 ; ��s�i!0 �þ X
!0;!002W

ið~Jð!0 þ isÞ

� ~Jð!00 � isÞÞP!0 ��s�ið!0�!00ÞP
y
!00

� i~Jð!0 þ isÞ ��s�ið!0�!00ÞP
y
!00P!0

þ i~Jð!00 � isÞPy
!00P!0 ��s�ið!0�!00Þ; (2)

where ��s ¼
R1
0 dt0e�st0�ðt0Þ, ~JðxÞ ¼ P

qðjgqj2=!q þ xÞ is
the generalized spectral density, and we assume that
RðtÞ � �ðtÞ � �B for a thermal bath state �B at zero tem-

perature [26]. For later reference we define Ĵ, J, and F as

lim
s!0þ

� i~Jð!� isÞ ¼ Ĵ�ð!Þ ¼ ðJð!Þ � iFð!ÞÞ=2; (3)

where JðxÞ ¼ 2�
P

qjgqj2�ð!q þ xÞ is the spectral density
and FðxÞ ¼ ���1

R
d!Jð!Þ=ð!� xÞ [5,27] (see the

Supplemental Material [26]).
Since �ðtÞ is bounded, the Mittag-Leffler theorem

implies that ��s is determined by its poles [28]. Suppose
��s has a pole at s ¼ z; consistency between the right-hand
and left-hand sides of Eq. (2) then requires additional poles
in ��s at s ¼ zþ ið!0 �!00Þ, where !0, !00 2 W . This
motivates the ansatz

�� s ¼
X
�2V

��

s� i�
; (4)

where �� are as-yet-unknown residues. For consistency
in Eq. (2), V is a countably infinite set, with W � V .
To make progress, we truncateV to a finite set of the most
significant poles and require that the residues of poles that
appear on the left-hand side of Eq. (2) equal those on the
right-hand side. This becomes exact in the limit that a
complete set of poles is retained.

Since Tr � ¼ 1, � has a nonzero steady state, so ��s has a
pole at s ¼ 0. This suggests the simple but illuminating
example in which we retain only this pole (i.e., V ¼ f0g),
so ��s ¼ �0=s, and the left-hand side of Eq. (2) becomes a
constant (i.e., its residue is 0). The residue of the right-hand
side at s ¼ 0 should therefore vanish, yielding

0 ¼ �i½h0 � f0; �0� þ
X

!2W

Jð!ÞD½P!��0; (5)

where f0 ¼ P
!Fð!ÞPy

!P!=2 and D½A�� 	 A�Ay �
ðAyA�þ �AyAÞ=2 is the Lindblad superoperator. The so-
lution to Eq. (5) is the steady state of the conventional
Markovian dynamics [5,11]. Furthermore, F yields a dis-
persive Lamb shift that renormalizes the system dynamics.
Choosing HD such that h0 ¼ f0 cancels the dispersive
effects arising from the bath, so that the renormalized
system Hamiltonian vanishes in this interaction picture.
In general, consistency between residues appearing on

the left-hand and right-hand sides of Eq. (2) as s ! i�0
requires

i�0��0 ¼ �i
X
�2V

½h�0��; ��� þ
X

�2V ;!2W ;
!0¼!þ���0

fðĴþð!� �0Þ

þ Ĵ�ð!þ �ÞÞP!��P
y
!0 � ðĴþð!

� �0Þ��P
y
!0P! þ Ĵ�ð!þ �ÞPy

!0P!��Þg: (6)

The residues appearing in Eq. (4) are bounded matrices, so

we see from Eq. (6) that k��0 k 
 jĴ=�0j; i.e., the size of the
residue decreases with the magnitude of the pole. As
above, we choose HD so that h! ¼ f! to cancel dispersive
terms in Eq. (6). This choice fixes the poles that appear in

W . The Ĵ-dependent terms arising on the right-hand side
of Eq. (6) can be written as a sum of (a) dissipative
J-dependent terms, analogous to the Lindblad terms in
Eq. (5), (b) dispersive terms of the form i½f�0��; ���, where
f� depends on F, which are eliminated by the correct
choice of HD analogous to f0 in Eq. (5), and (c) residual
inhomogeneous F-dependent terms, which cannot be
eliminated.
To compute the transient dynamics of a system, we

should retain poles with negative real values. In what
follows, we will be concerned with steady-state properties
of a system operator MðtÞ ¼ P

!2WM!e
i!t, and so we

consider only pure-imaginary poles. The Laplace trans-
form is �Ms ¼

P
!2WTr fM! ��s�i!g, and the time-

averaged, steady-state expectation is the residue of �Ms at

s ¼ 0, i.e., hMi0 	 Tr fMðtÞ�ðtÞg ¼ P
�2VTr fMy

���g.
Importantly, this depends on both the time-averaged steady
state �0 and the dynamical residues ���0.
We note that the dynamical poles in the ansatz yield

non-Markovian evolution: in the dressed basis, Markovian
dynamics leads to stationary steady states, which implies
���0 ¼ 0. This corresponds to the simplest approximation
V ¼ f0g discussed above.
Using this formalism, we now turn to the example of a

microwave-driven, one-electron DQD system with local-
ized left jli, or right jri, states separated by a distance d,
interdot bias �, and interdot tunneling rate �, driven at
frequency !0 and amplitude�0, coupled to a phonon bath
[6,11,29]. The driven system Hamiltonian is
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HS ¼�ð��z þ��xÞ=2þ�0 cosð!0tÞðcos��z þ sin��xÞ;
¼���e

z=2þ�0 cosð!0tÞðcosð	��Þ�e
z

� sinð	��Þ�e
xÞ;

where �z 	 jlihlj � jrihrj and �x 	 jlihrj þ jrihlj. The

qubit splitting is � ¼ ð�2 þ �2Þ1=2 in the energy eigenba-
sis fjgi;jeig, �e

z¼sin	�xþcos	�z, �
e
x¼cos	�x�sin	�z,

and 	 ¼ arctanð�=�Þ. In a frame rotating at the driving
frequency !0 (and dropping terms with frequency �2!0

[30]), HS becomes time independent

HS ¼ �ð~��e
z þ ~��e

xÞ=2 	 � ~�0ðcos ~’�e
z þ sin ~’�e

xÞ=2;
(7)

where ~�¼��!0,
~�¼�0sinð	��Þ, ~’ ¼ arctanð ~�=~�Þ,

and ~�0 ¼ ð ~�2 þ ~�2Þ1=2 (here, the tildes denote bare
quantities).

We transform to an interaction picture defined by

HD ¼ �ð��e
z þ��e

xÞ=2 ¼ ��0�d
z=2;

in the dressed basis fj�i; jþig, �d
z ¼ cos’�e

z þ sin’�e
x,

’ ¼ arctanð�=�Þ, and �0 ¼ ð�2 þ �2Þ1=2. This gives the
Fourier coefficients of HSðtÞ defined earlier: h0 ¼
�½ ~�0 cosð~’� ’Þ ��0��d

z=2 and h��0 ¼ � ~�0 sinð~’�
’Þ�d�=2. We emphasize that � and� inHD will be chosen
below to cancel bath-induced dispersive terms.

The electron-phonon coupling Hamiltonian is given by
Eq. (1)withZS ¼ �z [11,31,32].ZSðtÞ hasFourier frequencies
W ¼ �f0;�0; !0; !0 ��0g and coefficients P0 ¼ 
0�

d
z ,

P�0 ¼
�0�dþ, P!0��0 ¼
!0��0�d�, and P!0
¼
!0

�d
z ,

where 
0¼ cos	cos’, 
�0 ¼ � cos	 sin’, 
!0��0 ¼
�sin	ð1�cos’Þ=2, and 
!0

¼�sin	sin’=2 [11].

To illustrate the significance of the dynamical poles, we
choose V ¼ f0;��0g. Note that �0 is the renormalized
Rabi frequency, which is fixed once HD is chosen to
eliminate dispersive shifts. The dispersive terms appearing
in Eq. (6) are f0 ¼ a0�

d
z=2 and f��0 ¼ a�0�d�=2, where

a0 ¼ ð�
2
!0��0F!0��0 þ 
2

!0þ�0F!0þ�0 þ 
2
�0F�0 Þ=2;

a�0 ¼ 
!0
ð
!0��0F!0��0 � 
!0þ�0F!0þ�0 Þ � 
0
�0F�0 ;

(8)

and Fx 	 FðxÞ � Fð�xÞ. Setting h� ¼ f� to cancel dis-
persive terms yields the required relationship between the

bare ~� and ~� and the renormalized � and �

~�

~�

" #
¼ � cos’ � sin’

sin’ cos’

" #
a0 ��0

a�0

" #
: (9)

We solve this nonlinear equation numerically for � and�.
The renormalization of the detuning arises from the

phonon-induced Lamb shift [5]. This shift depends on the
phonon modes with which the driven system is most
strongly coupled, which depends itself on detuning [11],

resulting in a detuning-dependent Lamb shift. The renor-
malization of the Rabi frequency is related to the polaron
transformation [10,33], in which pure-electronic modes are
renormalized to polaronic modes with larger effective
mass, reducing the transition dipole moments.
Differences between the bare and renormalized quanti-

ties ultimately depend on the electron-phonon coupling via
F, which appears in a0 and a�0 . Very close to resonance
~� � 0, some intuition into the effect of the dispersive shifts
can be gained by expanding the right-hand side of Eq. (9)
in powers of �0 and then solving to find

�approx � ~�=ð1þ F0ð0ÞÞþO½~�3= ~�2�; (10a)

�approx � ~�=ð1� F0ð0ÞÞþO½~�2= ~��: (10b)

Thus, the renormalized detuning and Rabi frequency are
scaled with respect to the bare values. Importantly, the
scaling factors depend (nonperturbatively) on F0ð0Þ.
Focusing on the specific case of bulk piezoelectric pho-

non coupling, the spectral density is [11]

Jð!�Þ ¼
8<
:�Pj!�j 1�sincðd�!�Þ

1þð!�=!�
cÞ2 if !� < 0

0 if !� � 0;
(11)

where !� 	 !=!0, d
� 	 d!0=cs, and P are, respectively,

nondimensionalized frequency, interdot separation, and
coupling strength (cs is the speed of sound) [27]. The
high-energy cutoff !�

c is determined by the spatial extent
of the localized wave functions jli, jri. Figure 1 shows J
and F [which also has an analytic expression (see the
Supplemental Material [26])]. The interdot separation
results in double-slit-like interference as phonons interact
with the localized states, causing oscillations in J and F,
with a spectral period � 2�=d� [1,11]. This leads to a
low-frequency cutoff 
1=d� in J. Between the low- and
high-frequency cutoffs, J is Ohmic with a superimposed
oscillatory modulation.
F0ð0Þ determines the renormalization strength. We can

calculate F0ð0Þ exactly (see the Supplemental Material
[26]), but a good estimate is obtained by noting thatF0ð0Þ ¼
���1

R
d!Jð!Þ=!2. Combined with the facts that

10 8 6 4 2 0 2

0

1

2

3
J P

F P

FIG. 1 (color online). Dependence of J (solid line) and F
(dashed line) on !, for !�

c ¼ 2 and d� ¼ 20.
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J � �Pj!j for !2½�!�
c;�1=d�� and it decays rapidly

outside this interval, we find that F0ð0Þ � �P logðd�!�
cÞ<

0. Thus, the high- and low-frequency cutoffs appear as a
ratio in the renormalization strength. It follows from
Eq. (10) that near resonance, the renormalized detuning is
larger than the bare value, while the renormalized Rabi
frequency is smaller.

Figure 2 shows the effects of renormalization on � and
�. The renormalized quantities (solid curves) are modified
most strongly close to resonance. Near resonance, the
renormalized detuning is steeper than the bare detuning
(dashed curve), consistent with the argument above. The
renormalized Rabi frequency (bottom panel, solid curve) is
lower than the bare value (dashed curve) and is well
approximated by Eq. (10b) near resonance.

The theoretical framework discussed here differs from
Markovian models in two respects: it includes contribu-
tions arising from (a) the dynamical steady state of the
driven system and (b) the bath-induced renormalization of
the system in which HD is chosen self-consistently to
remove dispersive shifts and define the poles in W . We
elucidate these contributions by manually suppressing
each effect and comparing with the fully dynamical, renor-
malized result. We illustrate this by calculating the right
dot population M ¼ jrihrj ¼ ð1� �zÞ=2 [6], which mod-
els an electrometer adjacent to the DQD [8,34].

Figure 3 shows the time-averaged, steady-state popula-
tion hMi0 for relatively weak driving (top) and relatively
strong driving (bottom). The solid curves show the dy-
namical, renormalized results; the dashed curve retains
the dynamical poles but neglects renormalization [35];
and the dotted curve neglects both, corresponding to the
strong-driving Markov approximation [11]. The resonant
peaks exhibit strong phonon-induced asymmetry, which
becomes more pronounced at higher driving, to the extent
of exhibiting population inversion on the blue-detuned side
[9,11]. The enhancement of the blue-detuned wing is a
consequence of photon absorption from the driving field
accompanied by a Raman phonon emission, leading to a
higher rate of excitation compared to the relaxation rate
[11]. At weak driving, the resonant peak is unsaturated
(hMi0 < 0:5) [Fig. 3 (top)], but this is only evident when
dynamical poles are included (solid and dashed curves);
suppressing dynamical poles necessarily yields a saturated
peak on resonance, i.e., hMi0 ¼ 0:5 at � ¼ 0 (dotted
curves). Consistent with Fig. 2, the effects of parameter
renormalization are most significant near resonance, nar-
rowing the central resonant peak. This occurs for two
reasons: as � moves away from resonance, the renormal-
ized detuning changes more rapidly with � than does the
bare detuning, and the renormalized Rabi frequency
decreases below its resonant value.
Following Eq. (6) we noted that there are residual

F-dependent terms in Eq. (6) that cannot be canceled.
This is manifested as subtle ‘‘shoulders’’ appearing on the
red-detuned side of the resonance (�>!0), as shown in the
inset to Fig. 3 (bottom), resulting in non-Lorentzian decay

0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4

0.8
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0.0
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0.4
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.05

0.10

0.15

0.20

approx

FIG. 2 (color online). Top: detuning versus bias. Bottom: Rabi
frequency versus bias. Dashed curves: bare detuning ~� and Rabi
frequency ~�. Solid curves: renormalized detuning � and
Rabi frequency � obtained by solving Eq. (9). Dotted curves:
near-resonance approximations to renormalized quantities from
Eq. (10);�approx captures the steeper slope of� close to resonance.

Parameters are�� ¼ 0:3, � ¼ �=2,!�
c ¼ 2, d� ¼ 20,��

0 ¼ 0:2,
and P ¼ 0:2. Resonance occurs at �� ¼ ð1���2Þ1=2 � 0:954.

0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4
0.0
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0
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M
0

1.2 1.4
0
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FIG. 3 (color online). Top: time-averaged steady-state popula-
tion of the right dot hMi0 ¼ hjrihrji0 for relatively weak driving
��

0 ¼ 0:07. Bottom: hMi0 for stronger driving ��
0 ¼ 0:2. Inset:

zoom-in of red-detuned wing. Different curves correspond to
different levels of approximation. Solid dark curve: V ¼
f0;��0g and renormalized �, �. Dashed curve: V ¼ f0;��0g
and bare ~�, �approx. Dotted curve: V ¼ f0g and bare ~�, �approx.

Solid light curve: no driving. Other parameters are as in Fig. 2.

PRL 111, 180602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 NOVEMBER 2013

180602-4



of the red-detuned wings. In this regime, the microwave
photons have insufficient energy to drive real transitions
between the energy eigenstates, highlighting the fact that
the shoulders are a consequence of dispersive, rather than
dissipative, electron-phonon coupling.

Phenomena such as the transition from asymmetric un-
saturated resonances at weak driving to population inver-
sion at strong driving, and phonon-induced shoulders have
been observed experimentally [13]. Our theory yields good
qualitative agreement and reasonable quantitative agree-
ment with these experimental results. Intriguing connec-
tions exist between our approach and a non-Markovian
extension to Redfield theory [18,23].

In conclusion, we have derived a set of coupled equa-
tions for the residues of dynamical poles of the reduced
density matrix of a system. These terms yield steady-state
dynamics which are absent from Markovian treatments, as
well as nonperturbative renormalization of the bare system
parameters. Neglecting either the dynamical poles or the
effects of renormalization yields qualitatively different
results, particularly near resonance. The theory is consis-
tent with recent experimental results which exhibit the
same bath-induced phenomena discussed here. Our for-
malism permits arbitrarily many Floquet eigenfrequencies
in the driven Hamiltonian and so extends straightforwardly
to higher harmonics.
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