193 research outputs found
Transmission Power Measurements for Wireless Sensor Nodes and their Relationship to the Battery Level
In this work we focus on the new generation EYESIFXv2 [1] wireless sensor nodes by carrying out experimental measurements on power related quantities. In particular, our aim is to characterize the relationship between the level of the battery and the transmission power radiated by the node. The present results point out the non linear and non trivial effects due to the output potentiometer which can be used to tune the transmission power. It shall be observed that a thorough study of how battery and/or potentiometer settings translate to actual transmitted power levels is crucial to e.g. design correct power control algorithms, which can effectively operate under any operational condition of the wireless sensor device
P2O5-free cerium containing glasses: Bioactivity and cytocompatibility evaluation
(1) Background: valuation of the bioactivity and cytocompatibility of P2O5-free and CeO2 doped glasses. (2) Methods: all glasses are based on the Kokubo (K) composition and prepared by a melting method. Doped glassed, K1.2, K3.6 and K5.3 contain 1.2, 3.6, and 5.3 mol% of CeO2. Bioactivity and cytotoxicity tests were carried out in simulated body fluid (SBF) solution and murine osteocyte (MLO-Y4) cell lines, respectively. Leaching of ions concentration in SBF was determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). The surface of the glasses were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. (3) Results: P2O5-free cerium doped glasses are proactive according to European directives. Cerium increases durability and retards, but does not inhibit, (Ca10(PO4)6(OH)2, HA) formation at higher cerium amounts (K3.6 and K5.3); however, cell proliferation increases with the amount of cerium especially evident for K5.3. (4) Conclusions: These results enforce the use of P2O5-free cerium doped bioactive glasses as a new class of biomaterials
Lung regions differently modulate bronchial branching development and extracellular matrix plays a role in regulating the development of chick embryo whole lung.
Normal branching development is dependent on the correlation between cells and extracellular matrix. In this interaction glycosaminoglycans, cytokines and growth factors play a fundamental role. In order to verify the distribution and influence of extracellular matrix and related enzymes on chick embryo lung development, 6 day-old whole lungs were maintained in vitro with testicular hyaluronidase, beta-N-acetyl-D-glucosaminidase and chondrotinase ABC or in linkage with apical, medial and caudal lung regions of 6-day development before and after enzyme treatment. In a separate lung region beta-N-acetyl-D-glucosaminidase and hyaluronidase were determined. Our data show that the whole lung cultures increase bronchial branching development when the medial region is admixed separately, while the separate apical or caudal regions or apical combined with caudal region do not affect bronchial branching development. The enzyme treatment of medial region prevents the branching development in associated whole lung. The bronchial branching development of whole lung cultured in medium containing the enzymes related to glycosaminoglycans turnover is significantly altered. In conclusion, these data show that the different influence of separate apical, medial, caudal lung regions on bronchial branching development is related to the extracellular matrix composition
Glycosidases during chick embryo lung development and their colocalization with proteoglycans and growth factors
During development, the epithelial component of the lung goes through a complex orderly process of branching, following strict patterns of space and time. Proteoglycans, glycosaminoglycans and growth factors are fundamental components of the extracellular matrix and perform a key role in differentiative processes. The embryonic chick lung shows a specific glycosaminoglycan composition at different levels of branching and at different embryonic stages. Proteoglycan and glycosaminoglycan accumulation is the result of secretion, absorption and degradation processes. In this pathway, enzymes, such as glycosidases, growth factors and cytokines are involved. We examined the behaviour of glycosidases, such as ß-hexosaminidases (ß-N-acetyl-D-glucosaminidase, ß- N-acetyl-D-galactosaminidase), ß-glucuronidase and ß-galactosidase, during the development of the lung bud. Our data show that the activity of the enzymes is closely linked to the processes of epithelial proliferation, bronchial tubule lengthening and infiltration of the surrounding mesenchyme. The glycosaminoglycans colocalize with transforming growth factor ß2 and inter- leukin-1 in the basement membrane and in the mesenchymal areas where the epithelium grows, and are complementary to the presence of the glycosidases. In conclusion, the activity of these glycosidases is spatially and temporally programmed and favors the release of the factors and the events which they influence
Light chain deposition disease presenting as paroxysmal atrial fibrillation: a case report
<p>Abstract</p> <p>Introduction</p> <p>Light chain deposition disease (LCDD) can involve the heart and cause severe heart failure. Cardiac involvement is usually described in the advanced stages of the disease. We report the case of a woman in whom restrictive cardiomyopathy due to LCDD presented with paroxysmal atrial fibrillation.</p> <p>Case presentation</p> <p>A 55-year-old woman was admitted to our emergency department because of palpitations. In a recent blood test, serum creatinine was 1.4 mg/dl. She was found to have high blood pressure, left ventricular hypertrophy and paroxysmal atrial fibrillation. An ACE-inhibitor was prescribed but her renal function rapidly worsened and she was admitted to our nephrology unit. On admission serum creatinine was 9.4 mg/dl, potassium 6.8 mmol/l, haemoglobin 7.7 g/dl, N-terminal pro-brain natriuretic peptide 29894 pg/ml. A central venous catheter was inserted and haemodialysis was started. She underwent a renal biopsy which showed kappa LCDD. Bone marrow aspiration and bone biopsy demonstrated kappa light chain multiple myeloma. Echocardiographic findings were consistent with restrictive cardiomyopathy. Thalidomide and dexamethasone were prescribed, and a peritoneal catheter was inserted. Peritoneal dialysis has now been performed for 15 months without complications.</p> <p>Discussion</p> <p>Despite the predominant tubular deposition of kappa light chain, in our patient the first clinical manifestation of LCDD was cardiac disease manifesting as atrial fibrillation and the correct diagnosis was delayed. The clinical management initially addressed the cardiovascular symptoms without paying sufficient attention to the pre-existing slight increase in our patient's serum creatinine. However cardiac involvement is a quite uncommon presentation of LCDD, and this unusual case suggests that the onset of acute arrhythmias associated with restrictive cardiomyopathy and impaired renal function might be related to LCDD.</p
Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation
X-chromosome inactivation (XCI) results in the differential marking of the active and inactive X with epigenetic modifications including DNA methylation. Consistent with the previous studies showing that CpG island-containing promoters of genes subject to XCI are approximately 50% methylated in females and unmethylated in males while genes which escape XCI are unmethylated in both sexes; our chromosome-wide (Methylated DNA ImmunoPrecipitation) and promoter-targeted methylation analyses (Illumina Infinium HumanMethylation27 array) showed the largest methylation difference (D = 0.12, p < 2.2 E−16) between male and female blood at X-linked CpG islands promoters. We used the methylation differences between males and females to predict XCI statuses in blood and found that 81% had the same XCI status as previously determined using expression data. Most genes (83%) showed the same XCI status across tissues (blood, fetal: muscle, kidney and nerual); however, the methylation of a subset of genes predicted different XCI statuses in different tissues. Using previously published expression data the effect of transcription on gene-body methylation was investigated and while X-linked introns of highly expressed genes were more methylated than the introns of lowly expressed genes, exonic methylation did not differ based on expression level. We conclude that the XCI status predicted using methylation of X-linked promoters with CpG islands was usually the same as determined by expression analysis and that 12% of X-linked genes examined show tissue-specific XCI whereby a gene has a different XCI status in at least one of the four tissues examined
- …