15 research outputs found

    It\u27s Time to Listen: There is Much to be Learned from the Sounds of Tropical Ecosystems

    Get PDF
    Knowledge that can be gained from acoustic data collection in tropical ecosystems is low‐hanging fruit. There is every reason to record and with every day, there are fewer excuses not to do it. In recent years, the cost of acoustic recorders has decreased substantially (some can be purchased for under US$50, e.g., Hill et al. 2018) and the technology needed to store and analyze acoustic data is continuously improving (e.g., Corrada Bravo et al. 2017, Xie et al. 2017). Soundscape recordings provide a permanent record of a site at a given time and contain a wealth of invaluable and irreplaceable information. Although challenges remain, failure to collect acoustic data now in tropical ecosystems would represent a failure to future generations of tropical researchers and the citizens that benefit from ecological research. In this commentary, we (1) argue for the need to increase acoustic monitoring in tropical systems; (2) describe the types of research questions and conservation issues that can be addressed with passive acoustic monitoring (PAM) using both short‐ and long‐term data in terrestrial and freshwater habitats; and (3) present an initial plan for establishing a global repository of tropical recordings

    First evidence of fish larvae producing sounds

    No full text
    The acoustic ecology of marine fishes has traditionally focused on adults, while overlooking the early life-history stages. Here, we document the first acoustic recordings of pre-settlement stage grey snapper larvae ( Lutjanus griseus ). Through a combination of in situ and unprovoked laboratory recordings, we found that L. griseus larvae are acoustically active during the night, producing ‘knock’ and ‘growl’ sounds that are spectrally and temporally similar to those of adults. While the exact function and physiological mechanisms of sound production in fish larvae are unknown, we suggest that these sounds may enable snapper larvae to maintain group cohesion at night when visual cues are reduced

    Orientation Behavior in Fish Larvae: A Missing Piece to Hjort\u27s Critical Period Hypothesis

    No full text
    Larval reef fish possess considerable swimming and sensory abilities, which could enable navigation towards settlement habitat from the open ocean. Due to their small size and relatively low survival, tagging individual larvae is not a viable option, but numerical modeling studies have proven useful for understanding the role of orientation throughout ontogeny. Here we combined the theoretical framework of the biased correlated random walk model with a very high resolution three-dimensional coupled biophysical model to investigate the role of orientation behavior in fish larvae. Virtual larvae of the bicolor damselfish (Stegastes partitus) were released daily during their peak spawning period from two locations in the Florida Keys Reef Tract, a region of complex eddy fields bounded by the strong Florida Current. The larvae began orientation behavior either before or during flexion, and only larvae that were within a given maximum detection distance from the reef were allowed to orient. They were subjected to ontogenetic vertical migration, increased their swimming speed during ontogeny, and settled on reefs within a flexible window of 24 to 32 days of pelagic duration. Early orientation, as well as a large maximum detection distance, increased settlement, implying that the early use of large-scale cues increases survival. Orientation behavior also increased the number of larvae that settled near their home reef, providing evidence that orientation is a mechanism driving self-recruitment. This study demonstrates that despite the low swimming abilities of the earliest larval stages, orientation during this critical period would have remarkable demographic consequences

    Behavioural responses to fisheries capture among sharks caught using experimental fishery gear

    No full text
    The response to capture is important in fisheries because it can reveal potential threats to species beyond fishing mortalities resulting from direct harvest. To date, the vast majority of studies assessing shark stress responses have used physiology or biotelemetry to look at sensitivity after capture, leaving a gap in our understanding of the behaviours of sharks during capture. We examined the behavioural responses of sharks to capture by attaching accelerometers to fishing gear and measuring the immediate and prolonged forces they exerted while on the line. We recorded acceleration vectors and derived the rate of intense fighting behaviours of 23 individual sharks comprising three species. Results suggest that blacktip sharks exhibited intense bouts of fighting behaviour at the onset of hooking, while nurse and tiger sharks displayed more subdued acceleration values during capture. We also obtained plasma lactate from a subset of individuals and detected a strong correlation with maximum acceleration. These results align with previously published values and suggest that shark movement during fisheries capture is an important factor during bycatch and catch-and-release interactions.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Categorizing Active Marine Acoustic Sources Based on Their Potential to Affect Marine Animals

    No full text
    Marine acoustic sources are widely used for geophysical imaging, oceanographic sensing, and communicating with and tracking objects or robotic vehicles in the water column. Under the U.S. Marine Mammal Protection Act and similar regulations in several other countries, the impact of controlled acoustic sources is assessed based on whether the sound levels received by marine mammals meet the criteria for harassment that causes certain behavioral responses. This study describes quantitative factors beyond received sound levels that could be used to assess how marine species are affected by many commonly deployed marine acoustic sources, including airguns, high-resolution geophysical sources (e.g., multibeam echosounders, sidescan sonars, subbottom profilers, boomers, and sparkers), oceanographic instrumentation (e.g., acoustic doppler current profilers, split-beam fisheries sonars), and communication/tracking sources (e.g., acoustic releases and locators, navigational transponders). Using physical criteria about the sources, such as source level, transmission frequency, directionality, beamwidth, and pulse repetition rate, we divide marine acoustic sources into four tiers that could inform regulatory evaluation. Tier 1 refers to high-energy airgun surveys with a total volume larger than 1500 in3 (24.5 L) or arrays with more than 12 airguns, while Tier 2 covers the remaining low/intermediate energy airgun surveys. Tier 4 includes most high-resolution geophysical, oceanographic, and communication/tracking sources, which are considered unlikely to result in incidental take of marine mammals and therefore termed de minimis. Tier 3 covers most non-airgun seismic sources, which either have characteristics that do not meet the de minimis category (e.g., some sparkers) or could not be fully evaluated here (e.g., bubble guns, some boomers). We also consider the simultaneous use of multiple acoustic sources, discuss marine mammal field observations that are consistent with the de minimis designation for some acoustic sources, and suggest how to evaluate acoustic sources that are not explicitly considered here

    Categorizing Active Marine Acoustic Sources Based on Their Potential to Affect Marine Animals

    No full text
    Marine acoustic sources are widely used for geophysical imaging, oceanographic sensing, and communicating with and tracking objects or robotic vehicles in the water column. Under the U.S. Marine Mammal Protection Act and similar regulations in several other countries, the impact of controlled acoustic sources is assessed based on whether the sound levels received by marine mammals meet the criteria for harassment that causes certain behavioral responses. This study describes quantitative factors beyond received sound levels that could be used to assess how marine species are affected by many commonly deployed marine acoustic sources, including airguns, high-resolution geophysical sources (e.g., multibeam echosounders, sidescan sonars, subbottom profilers, boomers, and sparkers), oceanographic instrumentation (e.g., acoustic doppler current profilers, split-beam fisheries sonars), and communication/tracking sources (e.g., acoustic releases and locators, navigational transponders). Using physical criteria about the sources, such as source level, transmission frequency, directionality, beamwidth, and pulse repetition rate, we divide marine acoustic sources into four tiers that could inform regulatory evaluation. Tier 1 refers to high-energy airgun surveys with a total volume larger than 1500 in3 (24.5 L) or arrays with more than 12 airguns, while Tier 2 covers the remaining low/intermediate energy airgun surveys. Tier 4 includes most high-resolution geophysical, oceanographic, and communication/tracking sources, which are considered unlikely to result in incidental take of marine mammals and therefore termed de minimis. Tier 3 covers most non-airgun seismic sources, which either have characteristics that do not meet the de minimis category (e.g., some sparkers) or could not be fully evaluated here (e.g., bubble guns, some boomers). We also consider the simultaneous use of multiple acoustic sources, discuss marine mammal field observations that are consistent with the de minimis designation for some acoustic sources, and suggest how to evaluate acoustic sources that are not explicitly considered here

    Celestial patterns in marine soundscapes

    No full text
    Soundscape ecology is the study of the acoustic characteristics of habitats, and aims to discern contributions from biological and non-biological sound sources. Acoustic communication and orientation are important for both marine and terrestrial organisms, which underscores the need to identify salient cues within soundscapes. Here, we investigated temporal patterns in coral reef soundscapes, which is necessary to further understand the role of acoustic signals during larval settlement. We used 14 mo simultaneous acoustic recordings from 2 reefs, located 5 km apart in the Florida Keys, USA to describe temporal variability in the acoustic environment on scales of hours to months. We also used weather data from a nearby NOAA buoy to examine the influence of environmental variables on soundscape characteristics. We found that high acoustic frequencies typically varied on daily cycles, while low frequencies were primarily driven by lunar cycles. Some of the daily and lunar cycles in the acoustic data were explained by environmental conditions, but much of the temporal variability was caused by biological sound sources. The complexity of the soundscape had strong lunar periodicity at one reef, while it had a strong diurnal period at the other reef. At both reefs, the highest sound levels (~130 dB re: 1 μPa) occurred during new moons of the wet season, when many larval organisms settle on the reefs. This study represents an important example of recently-developed soundscape ecology tools that can be applied to any ecosystem, and the patterns uncovered here provide valuable insights into natural acoustic phenomena that occur in these highly diverse, yet highly threatened ecosystems
    corecore