32 research outputs found

    New analytical strategies in studying drug metabolism

    Get PDF
    Identification and elucidation of the structures of metabolites play major roles in drug discovery and in the development of pharmaceutical compounds. These studies are also important in toxicology or doping control with either pharmaceuticals or illicit drugs. This review focuses on: new analytical strategies used to identify potential metabolites in biological matrices with and without radiolabeled drugs; use of software for metabolite profiling; interpretation of product spectra; profiling of reactive metabolites; development of new approaches for generation of metabolites; and detection of metabolites with increased sensitivity and simplicity. Most of the new strategies involve mass spectrometry (MS) combined with liquid chromatography (LC

    New analytical strategies in studying drug metabolism

    No full text
    Identification and elucidation of the structures of metabolites play major roles in drug discovery and in the development of pharmaceutical compounds. These studies are also important in toxicology or doping control with either pharmaceuticals or illicit drugs. This review focuses on: new analytical strategies used to identify potential metabolites in biological matrices with and without radiolabeled drugs; use of software for metabolite profiling; interpretation of product spectra; profiling of reactive metabolites; development of new approaches for generation of metabolites; and detection of metabolites with increased sensitivity and simplicity. Most of the new strategies involve mass spectrometry (MS) combined with liquid chromatography (LC)

    The combination of liquid chromatography/tandem mass spectrometry and chip-based infusion for improved screening and characterization of drug metabolites

    No full text
    An approach has been developed for drug metabolism studies of non-radiolabeled compounds using on-line liquid chromatography/tandem mass spectrometry (LC/MS/MS) combined with chip-based infusion following fraction collection. The potential of this approach, which improves the data quality compared with only LC/MS analysis, has been investigated for the analysis of in vitro metabolites of tolcapone and talinolol, two compounds with well-characterized metabolism. The information-dependent LC/MS/MS analysis enables the characterization of the major metabolites while the chip-based infusion is used to obtain good product ion spectra for lower level metabolites, to generate complementary MS information on potential metabolites detected in the LC/MS trace, or to screen for unexpected metabolites. Fractions from the chromatographic analysis are collected in 20 second steps, into a 96-well plate. The fractions of interest can be re-analyzed with chip-based infusion on a variety of mass spectrometers including triple quadrupole linear ion trap (QqLIT or Q TRAP) and QqTOF systems. Acquiring data for several minutes using multi-channel acquisition (MCA), or signal averaging while infusing the fractions at approximately 200 nL/min, permits about a 50 times gain in sensitivity (signal-to-noise) in MS/MS mode. A 5-10 microL sample fraction can be infused for more than 30 min allowing the time to perform various MS experiments such as MS(n), precursor ion or neutral loss scans and accurate mass measurement, all in either positive or negative mode. Through fraction collection and infusion, a significant gain in data quality is obtained along with a time-saving benefit, because the original sample needs neither to be re-analyzed by re-injection nor to be pre-concentrated. Therefore, a novel hydroxylated talinolol metabolite could be characterized with only one injection

    Investigating the in vitro metabolism of fipexide: characterization of reactive metabolites using liquid chromatography/mass spectrometry

    No full text
    The in vitro metabolism of the nootropic drug fipexide was studied using different liquid chromatography/mass spectrometry (LC/MS) techniques. This drug has been withdrawn from the market due to toxic effects. No previous reports have investigated the possible involvement of reactive metabolites in the toxicity of fipexide. The hydrolysis of this drug leads to the formation of two potentially toxic species, 3,4-methylenedioxybenzylpiperazine (MDBP) and 4-chlorophenoxyacetic acid (4-CPA). Here, we investigate the in vitro metabolism of fipexide in human, rat, mouse and dog, as well as of MDBP and 4-CPA in human and rat, while focusing on the formation of reactive metabolites. A combination of LC/MS analyses on a hybrid quadrupole-linear ion trap instrument and accurate mass data from QqTOF measurements was employed for the characterization of these metabolites. Microsomal metabolites of fipexide were MDBP, 4-CPA, fipexide N-oxide or hydroxyl, demethylenated fipexide and other minor ones, all of which were investigated by tandem mass spectrometry. Reactive metabolites were detected using several trapping procedures with small molecules such as glutathione, its ethyl ester derivative and N-acetylcysteine. The demethylenated metabolite, a catechol, formed its corresponding ortho-quinone, which readily reacts with these nucleophiles. MDBP was studied in a similar manner, due to its ability to form an analogous catechol. Because of its acidic nature, 4-CPA was assessed for possible acylglucuronide and acyl-CoA thioester metabolites, which could also be involved in bioactivation pathways. Several important metabolites were identified as potential mediators of toxicity via protein binding
    corecore