27 research outputs found

    Correlation between safety attitudes and early adoption of cognitive aids in the German culture sphere: a multicenter survey study

    Get PDF
    Background: Cognitive Aids (checklists) are a common tool to improve patient safety. But the factors for their successful implementation and continuous use are not yet fully understood. Recent publications suggest safety culture to play a key role in this context. However, the effects on the outcome of implementation measures remain unclear. Hospitals and clinics that are involved in cognitive aid development and research might have significantly different safety cultures than their counterparts, resulting in skewed assessments of proper implementation. Therefore, the objective of this study was to assess the correlation between cognitive aid implementation and safety attitudes of staff members in early adopting and later adopting clinics. Methods: An online survey of the Safety Attitudes Questionnaire (SAQ) was carried out in German anaesthesiology departments during the initial implementation of a new checklist for emergencies during anesthesia (“eGENA” app). Subsequently an analysis between subgroups (“eGENA” app usage and occupation), with Kruskal–Wallis- and Mann–Whitney-U-Tests was carried out for the general SAQ, as well as it six subscales. Results: Departments that introduced “eGENA” app (Median 3,74, IQR 0,90) reported a significantly higher median SAQ (U (NeGENA = 6, Nnon eGENA = 14) = 70,0, z = 2,31, p = 0,02, r = 0,516) than their counterparts (Median 2,82, IQR 0,77) with significant differences in the dimensions teamwork climate, work satisfaction, perception of management and working conditions. Conclusion: Early adopters of cognitive aids are likely to show a significantly higher perception of safety culture in the SAQ. Consequently, successful implementation steps from these settings might not be sufficient in different clinics. Therefore, further investigation of the effects of safety culture on cognitive aid implementation should be conducted

    Mimicking the extracellular matrix – a biomaterials approach to inhibit tissue fibrosis

    Get PDF
    Epithelial tissue is marked by the presence of a specialized, highly cross-linked, sheet-like extracellular matrix, the basement membrane. Tissue-invasive events, such as the epithelial-to-mesenchymal transition (EMT) - a key event in gastrulation, tissue fibrosis and cancer metastasis – are characterized by irreversible structural changes of the basement membrane through proteolytic processing by matrix metalloproteinases (MMPs). We have recently reported a previously unidentified laminin fragment that is released during EMT by MMP2 and that modulates key EMT-signalling pathways. Specifically, interaction of the laminin fragment with α3β1-integrin triggers the down-regulation of MMP2 expression, thereby constituting a cell-basement membrane-cell feedback mechanism. Inhibiting MMPs has been proposed as a strategy to prevent pathological cell migration and basement membrane breakdown in the course of EMT. Here, we explore this cell-matrix-cell feedback mechanism to target pathological EMT in the course of tissue fibrosis. We present an electrospun biomaterial that is functionalized with the recombinant laminin fragment and that can be directly interfaced with epithelial tissue to interfere with EMT pathways and inhibit MMP2 expression and activity in vitro and in vivo. We demonstrate how interaction of the functionalized synthetic membrane with peritoneal tissue inhibits mesothelial EMT in a mouse model of TGFβ-induced peritoneal fibrosis by decreasing active MMP2 levels, and propose a mechanism of how the laminin fragment acts downstream of α3β1-integrin in epithelial cells, after it is released from the basement membrane

    Iron Accumulation with Age, Oxidative Stress and Functional Decline

    Get PDF
    Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength) in male Fischer 344 X Brown Norway rats fed ad libitum (AL) or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age) at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR) rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects
    corecore