95 research outputs found

    Habitat requirements and ecological niche of two cryptic amphipod species at landscape and local scales

    Get PDF
    Cryptic species are phylogenetically diverged taxa that are morphologically indistinguishable and may differ in their ecological and behavioral requirements. This may have important implications for ecosystem services and conservation of biodiversity. We investigated whether two ecologically important cryptic species of the freshwater amphipod Gammarus fossarum (types A and B) are associated with different habitats. We collected data on their occurrence at both the landscape scale (large watersheds) and at the local scale (river reach) to compare macro- and microscale environmental parameters associated with their presence. Analysis of the landscape scale data showed that occurrence of types A and B differ with respect to watershed and river size and, interestingly, human impact on river ecomorphology. Whereas type B was mainly found in less forested areas with higher human impact, type A showed the opposite occurrence pattern. Analyses of the local scale data suggested that habitats occupied by type A were characterized by larger gravel, larger stones and less macrophytes than habitats occupied by type B. The landscape and local data set showed contradicting patterns with regard to stream size. Overall, the observed differences between the two types of G. fossarum most likely reflect ecological differences between them, but alternative explanations (e.g., historical colonization processes) cannot be completely ruled out. Our study underlines that common cryptic species can differ in their ecology and response to anthropogenic influence. Such differences in habitat requirements among difficult-to-identify taxa present a challenge for biodiversity and ecosystem management. Our results emphasize the importance of conservative and precautionary approaches in maintenance of habitat diversity and environmental heterogeneity

    FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration

    Get PDF
    Background: Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood-retina barrier of the immune privileged eye. Methods: We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1 beta and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing. Results: RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1 beta to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells. Conclusion: Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function

    Spatial Distribution of Cryptic Species Diversity in European Freshwater Amphipods (Gammarus fossarum) as Revealed by Pyrosequencing

    Get PDF
    In order to understand and protect ecosystems, local gene pools need to be evaluated with respect to their uniqueness. Cryptic species present a challenge in this context because their presence, if unrecognized, may lead to serious misjudgement of the distribution of evolutionarily distinct genetic entities. In this study, we describe the current geographical distribution of cryptic species of the ecologically important stream amphipod Gammarus fossarum (types A, B and C). We use a novel pyrosequencing assay for molecular species identification and survey 62 populations in Switzerland, plus several populations in Germany and eastern France. In addition, we compile data from previous publications (mainly Germany). A clear transition is observed from type A in the east (Danube and Po drainages) to types B and, more rarely, C in the west (Meuse, Rhone, and four smaller French river systems). Within the Rhine drainage, the cryptic species meet in a contact zone which spans the entire G. fossarum distribution range from north to south. This large-scale geographical sorting indicates that types A and B persisted in separate refugia during Pleistocene glaciations. Within the contact zone, the species rarely co-occur at the same site, suggesting that ecological processes may preclude long-term coexistence. The clear phylogeographical signal observed in this study implies that, in many parts of Europe, only one of the cryptic species is present
    corecore