7 research outputs found

    A Novel Large-scale Mentoring Program for Medical Students based on a Quantitative and Qualitative Needs Analysis

    Get PDF
    Purpose: Mentoring plays an important role in students' performance and career. The authors of this study assessed the need for mentoring among medical students and established a novel large-scale mentoring program at Ludwig-Maximilians-University (LMU) Munich School of Medicine

    More mentoring needed? A cross-sectional study of mentoring programs for medical students in Germany

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite increasing recognition that mentoring is essential early in medical careers, little is known about the prevalence of mentoring programs for medical students. We conducted this study to survey all medical schools in Germany regarding the prevalence of mentoring programs for medical students as well as the characteristics, goals and effectiveness of these programs.</p> <p>Methods</p> <p>A definition of mentoring was established and program inclusion criteria were determined based on a review of the literature. The literature defined mentoring as a steady, long-lasting relationship designed to promote the mentee's overall development. We developed a questionnaire to assess key characteristics of mentoring programs: the advocated mentoring model, the number of participating mentees and mentors, funding and staff, and characteristics of mentees and mentors (e.g., level of training). In addition, the survey characterized the mentee-mentor relationship regarding the frequency of meetings, forms of communication, incentives for mentors, the mode of matching mentors and mentees, and results of program evaluations. Furthermore, participants were asked to characterize the aims of their programs. The questionnaire consisted of 34 questions total, in multiple-choice (17), numeric (7) and free-text (10) format. This questionnaire was sent to deans and medical education faculty in Germany between June and September 2009. For numeric answers, mean, median, and standard deviation were determined. For free-text items, responses were coded into categories using qualitative free text analysis.</p> <p>Results</p> <p>We received responses from all 36 medical schools in Germany. We found that 20 out of 36 medical schools in Germany offer 22 active mentoring programs with a median of 125 and a total of 5,843 medical students (6.9 - 7.4% of all German medical students) enrolled as mentees at the time of the survey. 14 out of 22 programs (63%) have been established within the last 2 years. Six programs (27%) offer mentoring in a one-on-one setting. 18 programs (82%) feature faculty physicians as mentors. Nine programs (41%) involve students as mentors in a peer-mentoring setting. The most commonly reported goals of the mentoring programs include: establishing the mentee's professional network (13 programs, 59%), enhancement of academic performance (11 programs, 50%) and counseling students in difficulties (10 programs, 45%).</p> <p>Conclusions</p> <p>Despite a clear upsurge of mentoring programs for German medical students over recent years, the overall availability of mentoring is still limited. The mentoring models and goals of the existing programs vary considerably. Outcome data from controlled studies are needed to compare the efficiency and effectiveness of different forms of mentoring for medical students.</p

    Leukotriene B4 indicates lung injury and on-going inflammatory changes after severe trauma in a porcine long-term model

    Get PDF
    Background: Recognizing patients at risk for pulmonary complications (PC) is of high clinical relevance. Migration of polymorphonuclear leukocytes (PMN) to inflammatory sites plays an important role in PC, and is tightly regulated by specific chemokines including interleukin (IL)−8 and other mediators such as leukotriene (LT)B4. Previously, we have reported that LTB4 indicated early patients at risk for PC after trauma. Here, the relevance of LTB4 to indicating lung integrity in a newly established long-term porcine severe trauma model (polytrauma, PT) was explored. Methods: mTwelve pigs (3 months old, 30 ± 5 kg) underwent PT including standardized femur fracture, lung contusion, liver laceration, hemorrhagic shock, subsequent resuscitation and surgical fracture fixation. Six animals served as controls (sham). After 72 h lung damage and inflammatory changes were assessed. LTB4 was determined in plasma before the experiment, immediately after trauma, and after 2, 4, 24 or 72 h. Bronchoalveolar lavage (BAL)-fluid was collected prior and after the experiment. Results: Lung injury, local gene expression of IL-8, IL-1ÎČ, IL-10, IL-18 and PMN-infiltration into lungs increased significantly in PT compared with sham. Systemic LTB4 increased markedly in both groups 4 h after trauma. Compared with declined plasma LTB4 levels in sham, LTB4 increased further in PT after 72 h. Similar increase was observed in BAL-fluid after PT. Conclusions: In a severe trauma model, sustained changes in terms of lung injury and inflammation are determined at day 3 post-trauma. Specifically, increased LTB4 in this porcine long-term model indicated a rapid inflammatory alteration both locally and systemically. The results support the concept of LTB4 as a biomarker for PC after severe trauma and lung contusion

    Comparative Analysis of the Regulatory T Cells Dynamics in Peripheral Blood in Human and Porcine Polytrauma

    Get PDF
    BackgroundSeverely injured patients experience substantial immunological stress in the aftermath of traumatic insult, which often results in systemic immune dysregulation. Regulatory T cells (Treg) play a key role in the suppression of the immune response and in the maintenance of immunological homeostasis. Little is known about their presence and dynamics in blood after trauma, and nothing is known about Treg in the porcine polytrauma model. Here, we assessed different subsets of Treg in trauma patients (TP) and compared those to either healthy volunteers (HV) or data from porcine polytrauma.MethodsPeripheral blood was withdrawn from 20 TP with injury severity score (ISS) ≄16 at the admittance to the emergency department (ED), and subsequently on day 1 and at day 3. Ten HV were included as controls (ctrl). The porcine polytrauma model consisted of a femur fracture, liver laceration, lung contusion, and hemorrhagic shock resulting in an ISS of 27. After polytrauma, the animals underwent resuscitation and surgical fracture fixation. Blood samples were withdrawn before and immediately after trauma, 24 and 72 h later. Different subsets of Treg, CD4+CD25+, CD4+CD25+FoxP3+, CD4+CD25+CD127−, and CD4+CD25+CD127−FoxP3+ were characterized by flow cytometry.ResultsAbsolute cell counts of leukocytes were significantly increasing after trauma, and again decreasing in the follow-up in human and porcine samples. The proportion of human Treg in the peripheral blood of TP admitted to the ED was lower when compared to HV. Their numbers did not recover until 72 h after trauma. Comparable data were found for all subsets. The situation in the porcine trauma model was comparable with the clinical data. In porcine peripheral blood before trauma, we could identify Treg with the typical immunophenotype (CD4+CD25+CD127−), which were virtually absent immediately after trauma. Similar to the human situation, most of these cells expressed FoxP3, as assessed by intracellular FACS stain.ConclusionDespite minor percental differences in the recovery of Treg populations after trauma, our findings show a comparable decrease of Treg early after polytrauma, and strengthen the immunological significance of the porcine polytrauma model. Furthermore, the Treg subpopulation CD4+CD25+CD127− was characterized in porcine samples

    Characterization of blunt chest trauma in a long-term porcine model of severe multiple trauma

    Get PDF
    Chest trauma has a significant relevance on outcome after severe trauma. Clinically, impaired lung function typically occurs within 72 hours after trauma. However, the underlying pathophysiological mechanisms are still not fully elucidated. Therefore, we aimed to establish an experimental long-term model to investigate physiological, morphologic and inflammatory changes, after severe trauma. Male pigs (sus scrofa) sustained severe trauma (including unilateral chest trauma, femur fracture, liver laceration and hemorrhagic shock). Additionally, non-injured animals served as sham controls. Chest trauma resulted in severe lung damage on both CT and histological analyses. Furthermore, severe inflammation with a systemic increase of IL-6 (p = 0.0305) and a local increase of IL-8 in BAL (p = 0.0009) was observed. The pO2/FiO2 ratio in trauma animals decreased over the observation period (p < 0.0001) but not in the sham group (p = 0.2967). Electrical Impedance Tomography (EIT) revealed differences between the traumatized and healthy lung (p < 0.0001). In conclusion, a clinically relevant, long-term model of blunt chest trauma with concomitant injuries has been developed. This reproducible model allows to examine local and systemic consequences of trauma and is valid for investigation of potential diagnostic or therapeutic options. In this context, EIT might represent a radiation-free method for bedside diagnostics
    corecore