1,004 research outputs found

    Hyperfine-induced effects on the linear polarization of the Kα1\alpha_1 emission from helium-like ions

    Full text link
    The linear polarization of the characteristic photon emission from few-electron ions is studied for its sensitivity with regard to the nuclear spin and magnetic moment of the ions. Special attention is paid, in particular, to the Kα1\alpha_1 (1s 2p_{3/2} ^{1,3}P_{1,2} \to 1s^2 ^1S_0) decay of selected helium-like ions following the radiative electron capture into initially hydrogen-like species. Based on the density matrix theory, a unified description is developed that includes both, the many-electron and hyperfine interactions as well as the multipole-mixing effects arising from the expansion of the radiation field. It is shown that the polarization of the Kα1\alpha_1 line can be significantly affected by the mutipole mixing between the leading M2M2 and hyperfine-induced E1E1 components of 1s2p ^3P_2, F_i \to 1s^2 ^1S_0, F_f transitions. This E1E1-M2M2 mixing strongly depends on the nuclear properties of the considered isotopes and can be addressed experimentally at existing heavy-ion storage rings

    Determinants and implications of local fiscal policy

    Get PDF

    Negative-continuum dielectronic recombination into excited states of highly-charged ions

    Full text link
    The recombination of a free electron into a bound state of bare, heavy nucleus under simultaneous production of bound-electron--free-positron pair is studied within the framework of relativistic first--order perturbation theory. This process, denoted as "negative-continuum dielectronic recombination" leads to a formation of not only the ground but also the singly- and doubly-excited states of the residual helium-like ion. The contributions from such an excited--state capture to the total as well as angle-differential cross-sections are studied in detail. Calculations are performed for the recombination of (initially) bare uranium U92+^{92+} ions and for a wide range of collision energies. From these calculations, we find almost 75 % enhancement of the total recombination probability if the excited ionic states are taken into account.Comment: 8 pages, 4 figures, accepted to PR

    SPARC at Storage Rings of FAIR

    Get PDF

    Many-electron effects on the x-ray Rayleigh scattering by highly charged He-like ions

    Full text link
    The Rayleigh scattering of x-rays by many-electron highly charged ions is studied theoretically. The many-electron perturbation theory, based on a rigorous quantum electrodynamics approach, is developed and implemented for the case of the elastic scattering of (high-energetic) photons by helium-like ion. Using this elaborate approach, we here investigate the many-electron effects beyond the independent-particle approximation (IPA) as conventionally employed for describing the Rayleigh scattering. The total and angle-differential cross sections are evaluated for the x-ray scattering by helium-like Ni26+^{26+}, Xe52+^{52+}, and Au77+^{77+} ions in their ground state. The obtained results show that, for high-energetic photons, the effects beyond the IPA do not exceed 2% for the scattering by a closed KK-shell.Comment: 15 pages, 11 figure

    Momentum-resolved study of the saturation intensity in multiple ionization

    Full text link
    We present a momentum-resolved study of strong field multiple ionization of ionic targets. Using a deconvolution method we are able to reconstruct the electron momenta from the ion momentum distributions after multiple ionization up to four sequential ionization steps. This technique allows an accurate determination of the saturation intensity as well as of the electron release times during the laser pulse. The measured results are discussed in comparison to typically used models of over-the-barrier ionization and tunnel ionization

    Target effects in negative-continuum assisted dielectronic recombination

    Full text link
    The process of recombination of a quasi-free electron into a bound state of an initially bare nucleus with the simultaneous creation of a bound-electron--free-positron pair is investigated. This process is called the negative-continuum assisted dielectronic recombination (NCDR). In a typical experimental setup, the initial electron is not free but bound in a light atomic target. In the present work, we study the effects of the atomic target on the single and double-differential cross sections of the positron production in the NCDR process. The calculations are performed within the relativistic framework based on QED theory, with accounting for the electron-electron interaction to first order in perturbation theory. We demonstrate how the momentum distribution of the target electrons removes the non-physical singularity of the differential cross section which occurs for the initially free and monochromatic electrons
    • …
    corecore