2 research outputs found

    Pituitary Pars Intermedia Dysfunction and Metabolic Syndrome in Donkeys

    Get PDF
    Appropriate medical care for donkeys is challenging despite being important working animals in non-industrialized countries and pets in first world countries. Although the same principles of diagnosis and therapy as in horses are commonly applied, there are differences in reference values and physiologic reaction to dynamic tests. However, donkeys seem to suffer from typical equine diseases, such as metabolic syndrome and pituitary pars intermedia dysfunction (PPID). Asinine metabolic syndrome (AMS) comprises obesity, insulin dysregulation, and laminitis. The principles of diagnosis are similar to horses. Donkey-specific reference ranges for insulin and glucose have been evaluated previously. Examinations regarding dynamic testing revealed differences in the intravenous glucose tolerance test and the combined insulin tolerance test compared to horses. The therapy of AMS is based mainly on weight loss and exercise. There are conflicting data regarding the incidence of PPID in donkeys. Laminitis and hypertrichosis were described as the main clinical signs. Species-specific and seasonal reference ranges were defined to diagnose PPID in donkeys. Furthermore, the dexamethasone suppression test, the thyrotropin releasing hormone (TRH) test and the combined dexamethasone suppression/TRH test were evaluated. Pergolide is commonly recommended for treatment

    Molecular Characterization of Equine Staphylococcus aureus Isolates Exhibiting Reduced Oxacillin Susceptibility

    Get PDF
    The detection of borderline oxacillin-resistant Staphylococcus aureus (BORSA) represents a challenge to both, veterinary and human laboratories. Between 2015 and 2017, 19 equine S. aureus with elevated minimal inhibitory concentrations for oxacillin were detected in routine diagnostics. The aim of this study was to characterize these isolates to identify factors possibly associated with the BORSA phenotype. All S. aureus were subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). A quantifiable β-lactamase activity assay was performed for a representative subset of 13 isolates. The WGS data analysis of the 19 BORSA isolates identified two different genomic lineages, sequence type (ST) 1 and ST1660. The core genome multilocus sequence typing (cgMLST) revealed a close relatedness of all isolates belonging to either ST1 or ST1660. The WGS analysis identified the resistance genes aadD, dfrG, tet(L), and/or blaZ and aacA-aphD. Phenotypic resistance to penicillins, aminoglycosides, tetracyclines, fluoroquinolones and sulfamethoxazole/trimethoprim was observed in the respective isolates. For the penicillin-binding proteins 1–4, amino acid substitutions were predicted using WGS data. Since neither transglycosylase nor transpeptidase domains were affected, these alterations might not explain the BORSA phenotype. Moreover, β-lactamase activity was found to be associated with an inducible blaZ gene. Lineage-specific differences regarding the expression profiles were noted.Peer Reviewe
    corecore