13 research outputs found

    Two-photon photopolymerization directly initiated by spiropyran photochromic molecules

    Get PDF
    Here, we report the ability of spiropyrans to initiate two-photon polymerization (TPP) for the first time in the literature. The comparison and synergies between the spiropyran photochromic molecule of interest, namely 6-nitro-BIPS, and well-known photoinitiators of radical photopolymerization have been studied. The spiropyran (SPy) molecule can initiate TPP in the presence of trifunctional acrylic monomers and create true 3D structures. The comparison with Irgacure 819, a well-known Type-I photoinitiator, shows that SPy has a comparable capability for TPP. In addition, the combination of SPy with methyl diethanolamine increased the reactivity of both one- and two-photon polymerizations. In the last section, we discuss which SPy isomer is the active photochromic species capable of generating radicals for initiating two-photon polymerization

    Tunable Electromagnetic Coupling in Plasmonic Nanostructures Mediated by Thermoresponsive Polymer Brushes

    No full text
    International audienceA smart and highly SERS-active plasmonic platform was designed by coupling regular arrays of nanotriangles to colloidal gold nanorods via a thermoresponsive polymer spacer (poly(N-isopropylacrylamide), PNIPAM). The substrates were prepared by combining a top-down and a bottom-up approach based on nanosphere lithography, surface-initiated controlled radical polymerization, and colloidal assembly. This multistep strategy provided regular hexagonal arrays of nanotriangles functionalized by polymer brushes and colloidal gold nanorods, confined exclusively on the nanotriangle surface. Interestingly, one could finely tune the gold nanorod impregnation on the polymer-coated nanostructures by adjusting the polymer layer thickness, leading to highly coupled plasmonic systems for intense SERS signal. Moreover, the thermoresponsive properties of the PNIPAM brushes could be wisely handled in order to monitor the SERS activity of the nanostructures coupled via this polymer spacer. The coupled hybrid plasmonic nanostructures designed in this work are therefore very promising smart platforms for the sensitive detection of analytes by SERS

    Hybridization of surface lattice modes: towards plasmonic metasurfaces with high flexible tunability

    No full text
    When assembled in periodic arrangements, metallic nanostructures (NSs) support plasmonic surface lattice (SL) resonances resulting from long-range interactions these surface lattice resonances differ radically from localized surface plasmon (LSP). Similarly to the hybridization of LSP resonances, observed in short-range interactions, we demonstrate the possibility to generate a hybridization of surface lattice (SL) plasmon resonances, by the excitation of grazing order diffraction within the metasurface. This hybridization leads to the emergence of bonding and anti-bonding modes. If hybridization of LSP modes has been widely described in recent literature, there is still no experimental proof-of-concept reporting such hybridization with SL plasmon resonances. We fill this gap in the present paper by considering surfaces made of binary arrays with unit cells made of two gold disks of distinct diameters. We demonstrate the possibility to maximize or cancel the interaction between the hybridized SL resonances by simply controlling the distance between particles. All our experimental results are supported by FDTD calculations. The hybridization of SL modes results in much richer hybridization scenario in terms of wavelength and quality factor control, compared to a hybridization of LSP in a short-range configuration. It offers unprecedented opportunities to generate innovative optical devices, with high flexible tunability

    Facile diazonium modification of pomegranate peel biochar: A stupendous derived relationship between thermal and Raman analyses

    No full text
    There is an ever growing interest worldwide in the development of biochar from a large variety of agrowastes. This work contributes to the domain by tackling an agrowaste represented in pomegranate peels powder. The latter was activated by acid treatment and then pyrolyzed to generate low cost biochar. To enrich the surface of the resulting biochar, it was arylated with various in-situ generated diazonium salts of 4-aminobenzoic acid (H2N-C6H4-COOH), sulfanilic acid (H2N-C6H4-SO3H) and Azure A dye. The effect of diazonium nature and concentration on the arylation process was monitored essentially using thermal gravimetric analysis (TGA), and Raman spectroscopy. These techniques showed gradual changes in the arylation of biochar at low concentrations of 10-5, 10-4 and 10-3 M of 4-aminobenzoic acid. Interestingly, Azure A diazonium salt induces lower extent of surface modification, likely due to steric hindrance. One key feature of this work is the correlation between D/G Raman peak intensity ratio and the mass loading of the aryl groups. To the very best of our knowledge this is the first report ever on diazonium modification of agrowaste-derived biochar and opens new avenues for such carbon allotrope, i.e. surface arylation and applications

    Surface Enhanced Raman Scattering on Regular Arrays of Gold Nanostructures: Impact of Long-Range Interactions and the Surrounding Medium

    No full text
    International audienceLong-range interaction in regular metallic nanostructure arrays can provide the possibility to manipulate their optical properties, governed by the excitation of localized surface plasmon (LSP) resonances. When assembling the nanoparticles in an array, interactions between nanoparticles can result in a strong electromagnetic coupling for specific grating constants. Such a grating effect leads to narrow LSP peaks due to the emergence of new radiative orders in the plane of the substrate, and thus, an important improvement of the intensity of the local electric field. In this work, we report on the optical study of LSP modes supported by square arrays of gold nanodiscs deposited on an indium tin oxyde (ITO) coated glass substrate, and its impact on the surface enhanced Raman scattering (SERS) of a molecular adsorbate, the mercapto benzoic acid (4-MBA). We estimated the Raman gain of these molecules, by varying the grating constant and the refractive index of the surrounding medium of the superstrate, from an asymmetric medium (air) to a symmetric one (oil). We show that the Raman gain can be improved with one order of magnitude in a symmetric medium compared to SERS experiments in air, by considering the appropriate grating constant. Our experimental results are supported by FDTD calculations, and confirm the importance of the grating effect in the design of SERS substrates

    DWCNT-Doped Silica Gel Exhibiting Both Ionic and Electronic Conductivities

    Get PDF
    Silica gels doped with double-walled carbon nanotubes (DWCNTs) were prepared using an aqueous sol−gel route in mild conditions (neutral pH, room temperature). The wet gels exhibited both ionic and electronic conduction. Electrochemical impedance spectroscopy was used to study these two different conduction pathways that prevail at different characteristic time scales. The ionic conduction in the silica network was found to be independent of the DWCNT-doping rate. The electronic conduction through the DWCNT network was found to occur above a critical concentration (0.175 wt %) corresponding to nanotube percolation threshold. The highest content in DWCNTs (0.8 wt %) exhibited a conductivity of 0.05 S/m. Furthermore, the DWCNTs network was found to evolve even after the macroscopic solidification of the gel, suggesting a reorganization of the DWCNTs at the molecular level. This phenomenon could be attributed to the polarization effect of the electrode and was confirmed by Raman spectroscopy studies. Such materials can be useful for the design of sensors incorporating electroactive chemical or biological species
    corecore