6 research outputs found

    Dengue shock syndrome, clinical and in vitro investigations

    No full text
    Le syndrome de choc de dengue (DSS) est une complication potentiellement mortelle dela dengue, première arbovirose humaine et problème majeur de santé publiquemondial. Il survient chez une fraction des patients, et résulte d’une fuite plasmatiquemassive, non prédictible, dont la physiopathologie est mal connue. Le décryptage de laréponse de l’hôte est donc essentiel pour améliorer le pronostic et le traitement despatients. Ce travail de thèse a abordé les mécanismes de la fuite plasmatique du DSS dedeux façons : versant immunitaire et versant endothélial. D’une part, nous avons comparéen ex vivo les profils transcriptionnels sanguins de patients présentant différentes formescliniques de dengue, afin d’identifier des mécanismes contribuant à la survenue du DSS.Cette étude a révélé l’activation chez les patients en DSS, de signatures proinflammatoiresà l’interface entre immunité innée et métabolisme lipidique, représentantde nouveaux bio-marqueurs potentiels du DSS. D’autre part, les études in vitro desinteractions entre un virus de dengue et deux lignées de cellules endothélialesmicrovasculaires humaines (CEM), a révélé des différences d’intensité de réponseantivirale, ainsi que des différences dans l’expression de protéines impliquées dans laperméabilité, selon l’origine des territoires endothéliaux. Ces résultats suggèrent que levirus contribue directement au dysfonctionnement endothélial, au côté de mécanismesindirects médiés par des facteurs de l’hôte. Les deux types d’approches mises en oeuvreont ainsi établi de nouvelles données sur la physiopathologie du DSS, qui pourraient àterme trouver des applications dans la prise en charge des malades.Dengue Shock Syndrome (DSS) is a life-threatening form of dengue infection, which is thefirst arboviral disease worldwide and a major public health problem. This severecomplication happens in a fraction of patients, and is the consequence of anunpredictable massive plasma leakage. The pathophysiology underlying DSS is stillunknown. Deciphering the host response to dengue infection is essential to improve boththe prognosis and the therapeutic management of dengue patients. This thesis workintended to study the mechanisms involved in DSS’ plasma leakage at both immunity (exvivo study) and endothelium (in vitro study) levels. First, in a ex vivo study, we comparedwhole blood cells’ transcriptional profiles of patients suffering from different clinicalpresentations of dengue disease, in order to identify mechanisms contributing to DSSoutcome. This study revealed the activation of pro-inflammatory signatures at theinterface of innate immunity and lipid metabolism, in DSS patients. Those signatures maybe new bio-markers of DSS. Second, in vitro studies of the consequences of a directinteraction between a dengue virus and human microvascular endothelial cells (MEC),revealed differences in antiviral response intensities and in the expression of proteinsinvolved in the endothelial permeability, depending on the endothelial origin of theMEC. Those results suggest that the virus directly contributes to the endotheliumdysfunction, together with indirect mechanisms triggered by soluble and cellular factors.Our investigations have produced new data on the pathophysiology of DSS that couldhave applications to the monitoring and treatment of the patients

    Structure and function of the Toscana virus cap-snatching endonuclease

    No full text
    International audienceToscana virus (TOSV) is an arthropod-borne human pathogen responsible for seasonal outbreaks of fever and meningoencephalitis in the Mediterranean basin. TOSV is a segmented negative-strand RNA virus (sNSV) that belongs to the genus phlebovirus (family Phenuiviridae, order Bunyavirales), encompassing other important human pathogens such as Rift Valley fever virus (RVFV). Here, we carried out a structural and functional characterization of the TOSV cap-snatching endonuclease, an N terminal domain of the viral polymerase (L protein) that provides capped 3 OH primers for transcription. We report TOSV endonuclease crystal structures in the apo form, in complex with a di-ketoacid inhibitor (DPBA) and in an intermediate state of inhibitor release , showing details on substrate binding and active site dynamics. The structure reveals substantial folding rearrangements absent in previously reported cap-snatching endonucleases. These include the relocation of the N terminus and the appearance of new structural motifs important for transcription and replication. The enzyme shows high activity rates comparable to other His+ cap-snatching en-donucleases. Moreover, the activity is dependent on conserved residues involved in metal ion and sub-strate binding. Altogether, these results bring new light on the structure and function of cap-snatching endonucleases and pave the way for the development of specific and broad-spectrum antivirals

    Identification of CCZ1 as an essential lysosomal trafficking regulator in Marburg and Ebola virus infections

    No full text
    : Marburg and Ebola filoviruses are two of the deadliest infectious agents and several outbreaks have occurred in the last decades. Although several receptors and co-receptors have been reported for Ebola virus, key host factors remain to be elucidated. In this study, using a haploid cell screening platform, we identify the guanine nucleotide exchange factor CCZ1 as a key host factor in the early stage of filovirus replication. The critical role of CCZ1 for filovirus infections is validated in 3D primary human hepatocyte cultures and human blood-vessel organoids, both critical target sites for Ebola and Marburg virus tropism. Mechanistically, CCZ1 controls early to late endosomal trafficking of these viruses. In addition, we report that CCZ1 has a role in the endosomal trafficking of endocytosis-dependent SARS-CoV-2 infections, but not in infections by Lassa virus, which enters endo-lysosomal trafficking at the late endosome stage. Thus, we have identified an essential host pathway for filovirus infections in cell lines and engineered human target tissues. Inhibition of CCZ1 nearly completely abolishes Marburg and Ebola infections. Thus, targeting CCZ1 could potentially serve as a promising drug target for controlling infections caused by various viruses, such as SARS-CoV-2, Marburg, and Ebola
    corecore