8 research outputs found

    Marine Actinomycetes: A New Source of Compounds against the Human Malaria Parasite

    Get PDF
    Background Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite.[br/] Methods We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage.[br/] Conclusion These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to phase I trials for the treatment of refractory multiple myeloma will need to be further explored to evaluate the safety profile for its use against malaria

    Differential Association of Plasmodium falciparum Na+/H+ Exchanger Polymorphism and Quinine Responses in Field- and Culture-Adapted Isolates of Plasmodium falciparum ▿ †

    No full text
    Plasmodium falciparum isolates with decreased susceptibility to quinine are increasingly being found in malaria patients. Mechanisms involved in this resistance are not yet understood. Several studies claim that alongside mutations in the Pfcrt and Pfmdr1 genes, the Pfnhe-1 Na+/H+ exchanger polymorphism plays a role in decreasing susceptibility. However, conflicting results on the link between the Pfnhe-1 gene and quinine resistance arise from field- and culture-adapted isolates. We tested the association between Pfnhe-1, Pfcrt, and Pfmdr1 polymorphisms in field- and culture-adapted isolates from various countries with their in vitro susceptibility to quinine. Field isolates presented a higher diversity of the Pfnhe-1 microsatellite sequence than culture-adapted isolates. In culture-adapted isolates but not in field isolates, mutations in the Pfcrt and Pfmdr1 genes, as well as a higher number of DNNND repeats in the Pfnhe-1 gene, were associated with a higher 50% inhibitory concentration (IC50) of quinine. Furthermore, most of the culture-adapted isolates with more than one DNNND repeat in the Pfnhe-1 gene also harbored mutated Pfcrt and Pfmdr1 genes with an apparent cumulative effect on quinine susceptibility. This study supports the involvement of the Pfnhe-1 gene in the modulation of the in vitro quinine response when associated with mutated Pfcrt and Pfmdr1 genes. Culture adaptation could be responsible for selection of specific haplotypes of these three genes. Methods used for drug testing might thus influence the association between Pfnhe-1 polymorphism and quinine susceptibility. However, we do not exclude the possibility that in particular settings, Pfnhe-1 polymorphism can be used as a molecular marker for surveillance of quinine resistance

    Effective Anti–SARS-CoV-2 Immune Response in Patients With Clonal Mast Cell Disorders

    No full text
    International audienceBackgroundMast cells are key players in innate immunity and the TH2 adaptive immune response. The latter counterbalances the TH1 response, which is critical for antiviral immunity. Clonal mast cell activation disorders (cMCADs, such as mastocytosis and clonal mast cell activation syndrome) are characterized by abnormal mast cell accumulation and/or activation. No data on the antiviral immune response in patients with MCADs have been published.ObjectiveTo study a comprehensive range of outcomes in patients with cMCAD with PCR- or serologically confirmed coronavirus disease 2019 and to characterize the specific anti–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune response in this setting.MethodsClinical follow-up and outcome data were collected prospectively over a 12-month period by members of the French Centre de RĂ©fĂ©rence des Mastocytoses rare disease network. Anti–SARS-CoV-2–specific T-cell activity was measured with an ELISA, and humoral responses were evaluated by assaying circulating levels of specific IgG, IgA, and neutralizing antibodies.ResultsOverall, 32 patients with cMCAD were evaluated. None required noninvasive or mechanical ventilation. Two patients were admitted to hospital for oxygen and steroid therapy. The SARS-CoV-2–specific immune response was characterized in 21 of the 32 patients. Most had high counts of circulating SARS-CoV-2–specific, IFN-γ–producing T cells and high titers of neutralizing antispike IgGs. The patients frequently showed spontaneous T-cell IFN-Îł production in the absence of stimulation; this production was correlated with basal circulating tryptase levels (a marker of the mast cell burden).ConclusionsPatients with cMCADs might not be at risk of severe coronavirus disease 2019, perhaps due to their spontaneous production of IFN-Îł
    corecore