52 research outputs found

    How important are Rho GTPases in neurosecretion?

    Get PDF
    International audienc

    18F-FDOPA PET/CT Uptake Parameters Correlate with Catecholamine Secretion in Human Pheochromocytomas

    Get PDF
    International audienceBackground: 18 F-FDOPA positron emission tomography/ computed tomography (PET/CT) is a sensitive nuclear imaging technology for the diagnosis of pheochromocytomas (PHEO). However, its utility in determining predictive factors for the secretion of catecholamines remains poorly studied. Methods: Thirty-nine histologically confirmed PHEO were included in this retrospective single-center study. Patients underwent 18 F-FDOPA PET/CT before surgery, with an evaluation of several uptake parameters (standardized uptake values [SUV max and SUV mean ] and the metabolic burden [MB] calculated as follows: MB = SUV mean × tumor volume) and measurement of plasma and/or urinary metanephrine (MN), normetanephrine (NM), and chromogranin A. Thirty-five patients were screened for germline mutations in the RET, SDHx, and VHL genes. Once resected, primary cultures of 5 PHEO were used for real-time measurement of catechol-amine release by carbon fiber amperometry. Results: The MB of the PHEO positively correlated with 24-h urinary excre-tion of NM (r = 0.64, p < 0.0001), MN (r = 0.49, p = 0.002), combined MN and NM (r = 0.75, p < 0.0001), and eventually plasma free levels of NM (r = 0.55, p = 0.006). In the mutated patients (3 SDHD, 2 SDHB, 3 NF1, 1 VHL, and 3 RET), a similar correlation was observed between MB and 24-h urinary combined MN and NM (r = 0.86, p = 0.0012). For the first time, we demonstrate a positive correlation between the PHEO-to-liver SUV max ratio and the mean number of secretory granule fusion events of the corresponding PHEO cells revealed by amperometric spikes (p = 0.01). Conclusion: While the 18 F-FDOPA PET/CT MB of PHEO strongly correlates with the concentration of MN, amperometric recordings suggest that 18 F-FDOPA uptake could be enhanced by overactivity of cat-echolamine exocytosis

    Exocytosis and Endocytosis in Neuroendocrine Cells: Inseparable Membranes!

    Get PDF
    International audienceAlthough much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid toward understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotrans-mitters, neuropeptides, and hormones occurs through calcium-regulated exocytosis at the plasma membrane. To allow recycling of secretory vesicle components and to preserve organelles integrity, cells must initiate and regulate compensatory membrane uptake. This review relates the fate of secretory granule membranes after full fusion exocytosis in neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving and sorting secretory granule membranes after exocytosis and we discuss the potential mechanisms of membrane retrieval

    Phospholipid Scramblase-1-Induced Lipid Reorganization Regulates Compensatory Endocytosis in Neuroendocrine Cells

    Get PDF
    Calcium-regulated exocytosis in neuroendocrine cells and neurons is accompanied by the redistribution of phosphatidylserine (PS) to the extracellular space, leading to a disruption of plasma membrane asymmetry. How and why outward translocation of PS occurs during secretion are currently unknown. Immunogold labeling on plasma membrane sheets coupled with hierarchical clustering analysis demonstrate that PS translocation occurs at the vicinity of the secretory granule fusion sites. We found that altering the function of the phospholipid scramblase-1 (PLSCR-1) by expressing a PLSCR-1 calcium-insensitive mutant or by using chromaffin cells from PLSCR-1−/−mice prevents outward translocation of PS in cells stimulated for exocytosis. Remarkably, whereas transmitter release was not affected, secretory granule membrane recapture after exocytosis was impaired, indicating that PLSCR-1 is required for compensatory endocytosis but not for exocytosis. Our results provide the first evidence for a role of specific lipid reorganization and calcium-dependent PLSCR-1 activity in neuroendocrine compensatory endocytosis

    Prion Proteins and Neuronal Death in the Cerebellum

    Get PDF
    The cellular prion protein, a major player in the neuropathology of prion diseases, is believed to control both death and survival pathways in central neurons. However, the cellular and molecular mechanisms underlying these functions remain to be deciphered. This chapter presents cytopathological studies of the neurotoxic effects of infectious prions and cellular prion protein-deficiency on cerebellar neurons in wild-type and transgenic mice. The immunochemical and electron microscopy data collected in situ and ex vivo in cultured organotypic cerebellar slices indicate that an interplay between apoptotic and autophagic pathways is involved in neuronal death induced either by the infectious prions or by prion protein-deficiency

    Rho GTPases and exocytosis: What are the molecular links?

    No full text
    International audienceDelivery of proteins or lipids to the plasma membrane or into the extracellular space occurs through exocytosis, a process that requires tethering, docking, priming and fusion of vesicles, as well as F-actin rearrangements in response to specific extracellular cues. GTPases of the Rho family have been implicated as important regulators of exocytosis, but how Rho proteins control this process is an open question. In this review, we focus on molecular connections that drive Rho-dependent exocytosis in polarized and regulated exocytosis. Specifically, we present data showing that Rho proteins interaction with the exocyst complex and IQGAP mediates polarized exocytosis, whereas interaction with actin-binding proteins like N-WASP mediates regulated exocytosis

    Role of Intersectin-1 in membrane trafficking (identification of new molecular partners)

    No full text
    L homéostasie cellulaire est intimement liée au trafic membranaire, processus dynamique qui permet les échanges de lipides et de protéines entre les compartiments cellulaires mais aussi entre la cellule et le milieu extracellulaire. L intersectin-1 (ITSN1) est une protéine d échafaudage multifonctionnelle, impliquée dans les processus d endocytose, d exocytose, diverses voies de signalisation ainsi que dans la survie cellulaire. L ensemble de mes travaux de doctorat a permis d identifier deux nouveaux partenaires de l ITSN1, RhoU et l OPHN1, et de montrer leur implication dans le trafic membranaire. De plus je démontre que les variants d épissage de l ITSN1 pourraient avoir une spécificité d interactiondifférente vis-à-vis de ses partenaires. Nous montrons aussi que l ITSN1 est capable de former des complexes entre ses différentes isoformes. Ainsi, l'ensemble de ces données apportent de nouvelles connaissances sur l interactÎme d ITSN1.The cellular homeostasis is tightly linked to the membrane trafficking, a dynamic process which allows lipid and protein exchange between the cellular compartments as well as the cell and the environment. Intersectin1 (ITSN1) is a multifunctional scaffold protein implicated in the processes of endocytosis and exocytosis, different signaling pathways and cell survival. In present study I have identified two new partners of ITSN1, RhoU and OPHN1, and demonstrated their implication in membrane trafficking. Surprisingly, I have also found that the alternative splicing of ITSN1-L can lead to the change of the specificity of its interaction with binding partners. In addition, I have shown that different ITSN1 isoforms are capable to form complexes with each other. All together these data add new knowledge to ITSN1 interactome.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF
    • 

    corecore