6 research outputs found
Galectin-3 and Cancer (Review)
Galectin-3 is a pleiotropic carbohydrate-binding protein involved in a variety of normal and pathological biological processes. Its carbohydrate-binding properties constitute the basis for cell-cell and cell-matrix interactions and cancer progression. Modulation of galectin-3 expression in cancer cells has indeed been reported. These observations lead to the recognition of galectin-3 as a diagnostic/prognostic marker for specific cancer types, such as thyroid and prostate. This review discusses the expression and cellular localization of galectin-3 in cancer cells, as well as its numerous functions in cancer cell biology, including cell-cell adhesion, cell-matrix interactions, growth regulation, apoptosis, angiogenesis and mRNA splicing
Expression of Galectins in Cancer: A Critical Review
A large body of literature has examined and described galectin expression in cancer. Discrepancies have been observed in the reported data, which hampered clear understanding of the expression profiles. This relates to the use of different types of methods that evaluate either global or specific gene expression in heterogeneous cancer tissue samples, type of antibodies used in immunohistochemistry and procedures of comparison of gene expression. In this manuscript, we review the main data concerning expression of galectins in human cancer. Only galectin-1 and galectin-3, the most abundant and examined galectins, will be examined here
Prostate carcinoma cell lines and apoptosis: A review
peer reviewedProstate cancer is a major pathology in industrialized countries. Tumor growth usually results from increased cell proliferation, conjugated with an inhibition of programmed cell death (apoptosis). In this paper, after a short description of the apoptotic mechanisms and their methods of investigation, we review the present knowledge of the implication of different molecular actors in the regulation of apoptosis in prostate cancer cells. This review notably summarizes the present knowledge of the (de)regulation of the effects of androgens, p53, Bcl-2, Bcl-xL, Bax, Akt, PTEN, Par-4, clusterine, caspases and NF-kappaB in prostate adenocarcinoma cell lines and provides an appraisal of their therapeutic potential. A better knowledge of the apoptotic pathways in these cells could indeed allow the development of new selective and effective anti-cancer strategies
Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3
Galectin-3, a multifunctional lectin, is involved during cancer progression. Previous observations showed that both cytosolic expression and nuclear exclusion of galectin-3 in human prostate cancer cells were associated to progression of the disease. In this study, we examined the biological roles of galectin-3 when expressed either in the nucleus or in the cytosol. LNCaP, a galectin-3-negative human prostate cancer cell line, was used to generate transfectants expressing galectin-3 either in the nucleus or in the cytosol. No changes in cell morphology, proliferation, attachment to laminin-1 or androgen dependency were observed. Cytoplasmic galectin-3 induced significantly increased Matrigel invasion, anchorage-independent growth and in vivo tumor growth and angiogenesis, and decreased inducible apoptosis. Surprisingly, nuclear galectin-3 affected these parameters in an opposite fashion with an overall antitumoral activity. Thus, our study demonstrates that galectin-3 exerts opposite biological activities according to its cellular localization: nuclear galectin-3 plays antitumor functions and cytoplasmic galectin-3 promotes tumor progression
Validation of Real-Time Methylation-Specific PCR to Determine O6-Methylguanine-DNA Methyltransferase Gene Promoter Methylation in Glioma
Epigenetic silencing of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) by promoter methylation predicts successful alkylating agent therapy, such as with temozolomide, in glioblastoma patients. Stratified therapy assignment of patients in prospective clinical trials according to tumor MGMT status requires a standardized diagnostic test, suitable for high-throughput analysis of small amounts of formalin-fixed, paraffin-embedded tumor tissue. A direct, real-time methylation-specific PCR (MSP) assay was developed to determine methylation status of the MGMT gene promoter. Assay specificity was obtained by selective amplification of methylated DNA sequences of sodium bisulfite-modified DNA. The copy number of the methylated MGMT promoter, normalized to the β-actin gene, provides a quantitative test result. We analyzed 134 clinical glioma samples, comparing the new test with the previously validated nested gel-based MSP assay, which yields a binary readout. A cut-off value for the MGMT methylation status was suggested by fitting a bimodal normal mixture model to the real-time results, supporting the hypothesis that there are two distinct populations within the test samples. Comparison of the tests showed high concordance of the results (82/91 [90%]; Cohen's kappa = 0.80; 95% confidence interval, 0.82−0.95). The direct, real-time MSP assay was highly reproducible (Pearson correlation 0.996) and showed valid test results for 93% (125/134) of samples compared with 75% (94/125) for the nested, gel-based MSP assay. This high-throughput test provides an important pharmacogenomic tool for individualized management of alkylating agent chemotherapy
Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin
Galectin-1 (gal-1) is a 14-kDa laminin-binding galectin involved in several biologic events including regulation of cancer cell proliferation and adhesion to the matrix. In this study, we examined gal-1 expression in 30 human epithelial ovary carcinoma samples by Western and Northern blotting and by immunohistochemistry. Gal-1 mRNA levels were increased in more than 95% of the examined ovary carcinoma samples, compared with a wedge resection of a normal ovary. Immunohistochemical analysis of the samples demonstrated gal-1 expression in cancer epithelial cells from 17 of 30 samples, with a cytoplasmic pattern. Gal-1 immunostaining was significantly increased in the stroma associated with carcinoma cells compared with the normal, noninvaded stroma (p = 0.003). This pattern of expression was confirmed by examination of 12 other frozen epithelial ovary carcinomas, using in situ hybridization. Immunohistochemical staining of the specimens demonstrated colocalization of gal-1, laminin-1, and fibronectin. In vitro experiments were conducted to elucidate the potential biologic role of gal-1 in ovarian cancer progression. Gal-1 protein expression and release was detected in AZ364, SK-OV-3, and AZ224, but not in OVCAR-3, AZ419, and AZ382, human ovary carcinoma cell lines. Incubation of 84BR fibroblasts with conditioned media harvested from the ovary carcinoma cell lines induced an increased expression of gal-1 in the cultured fibroblasts in all cases except AZ419 and SK-OV-3. High concentrations of gal-1 (100 mug/ml) induced significantly decreased cell proliferation in all cell lines, as defined by bromodeoxyuridine incorporation. Additionally, recombinant gal-1 induced a dose-dependent increase in in vitro adhesion of AZ224, SK-OV-3, and AZ382 cells to laminin-1; adhesion to fibronectin was increased by gal-1 in OVCAR-3, AZ224, and SK-OV-3. No effect was observed in the other cases. Our data contribute to define a role for gal-1 during the interactions between human ovary carcinoma cells and host fibroblasts