20 research outputs found

    Fluid dynamics in Sartobind membrane adsorber systems

    Get PDF
    [no abstract

    Eucalyptus Kraft Lignin as an Additive Strongly Enhances the Mechanical Resistance of Tree-Leaf Pellets

    Get PDF
    Pelleted biomass has a low, uniform moisture content and can be handled and stored cheaply and safely. Pellets can be made of industrial waste, food waste, agricultural residues, energy crops, and virgin lumber. Despite their many desirable attributes, they cannot compete with fossil fuel sources because the process of densifying the biomass and the price of the raw materials make pellet production costly. Leaves collected from street sweeping are generally discarded in landfills, but they can potentially be valorized as a biofuel if they are pelleted. However, the lignin content in leaves is not high enough to ensure the physical stability of the pellets, so they break easily during storage and transportation. In this study, the use of eucalyptus kraft lignin as an additive in tree-leaf pellet production was studied. Results showed that when 2% lignin is added the abrasion resistance can be increased to an acceptable value. Pellets with added lignin fulfilled all requirements of European standards for certification except for ash content. However, as the raw material has no cost, this method can add value or contribute to financing continued sweeping and is an example of a circular economy scenario

    Bridging the Implementation Gap between Pomace Waste and Large-Scale Baker’s Yeast Production

    No full text
    The objectives set in the European Green Deal constitute the starting point of this review, which then focuses on the current implementation gap between agro-industrial wastes as resources for large-scale bioprocesses (e.g., baker’s yeast, bioethanol, citric acid, and amino acids). This review highlights the current lack of sustainability of the post-harvest processing of grapes and apples. In light of the European Green Deal, industrial biotechnology often lacks sustainability as well. We reviewed the recent progress reported in the literature to enhance the valorization of grape and apple pomace and the current failure to implement this research in technical processes. Nevertheless, selected recent papers show new perspectives to bridge this gap by establishing close collaborations between academic teams and industrial partners. As a final outcome, for the first time, we drew a circular flow diagram that connects agriculture post-harvest transformation with the industrial biotechnology and other industries through the substantial valorization of apple and grape pomace into renewable energy (solid biofuels) and sugar extracts as feedstock for large-scale bioprocesses (production of baker’s yeast industry, citric acid, bioethanol and amino acids). Finally, we discussed the requirements needed to achieve the successful bridging of the implementation gap between academic research and industrial innovation

    A Hydrodynamic Approach to the Study of HIV Virus-Like Particle (VLP) Tangential Flow Filtration

    Get PDF
    Emerging as a promising pathway to HIV vaccines, Virus-Like Particles (VLPs) have drawn considerable attention in recent years. A challenge of working with HIV VLPs in biopharmaceutical processes is their low rigidity, and factors such as shear stress, osmotic pressure and pH variation have to be reduced during their production. In this context, the purification and concentration of VLPs are often achieved by means of Tangential Flow Filtration (TFF) involving ultrafiltration hollow fiber modules. Despite the urgent need for robust upscaling strategies and further process cost reduction, very little attention has been dedicated to the identification of the mechanisms limiting the performance of HIV VLP TFF processes. In this work, for the first time, a hydrodynamic approach based on particle friction was successfully developed as a methodology for both the optimization and the upscaling of HIV VLP TFF. Friction forces acting on near-membrane HIV VLPs are estimated, and the plausibility of the derived static coefficients of friction is discussed. The particle friction-based model seems to be very suitable for the fitting of experimental data related to HIV VLP TFF as well as for upscaling projections. According to our predictions, there is still considerable room for improvement of HIV VLP TFF, and operating this process at slightly higher flow velocities may dramatically enhance the efficiency of VLP purification and concentration. This work offers substantial guidance to membrane scientists during the design of upscaling strategies for HIV VLP TFF

    Enhancing DPCD in Liquid Products by Mechanical Inactivation Effects: Assessment of Feasibility

    No full text
    The enhancement of standard dense phase carbon dioxide (DPCD) pasteurization by additional mechanical effects was assessed in this work. These effects were induced during pasteurization by the sudden depressurization in a narrow minitube. The high flow velocities, moderate pressures (40–80 bar) and low temperatures (25–45 °C) lead to intense degasification and shear stress. The inactivation of the test microorganism Escherichia coli DH5α (E. coli DH5α) was determined before and after depressurization in the minitube, representing entirely chemical DPCD via dissolved CO2 and total inactivation comprising the effects of dissolved CO2 and mechanical effects, respectively. Compared to conventional DPCD pasteurization, which is mostly attributed to chemical effects, the additional mechanical effects increased the inactivation efficiency considerably

    PVDF membranes for membrane distillation prepared by VIPS – A combined study of artificial water channel effectiveness and membrane performance prediction

    No full text
    Repository of the data that are the basis of a research article "PVDF membranes for membrane distillation prepared by VIPS – A combined study of artificial water channel effectiveness and membrane performance prediction". The data result from a collaboration of Sven Johan Bohr and Kelvin Nursiah as part of Horizon 2020 project "intelWATT"

    One-step preparation of bilayered films from kraft lignin and cellulose acetate to mimic tree bark

    No full text
    This contribution presents the development of a dry-cast method for the one-step preparation of bio-based films from wood polymers that mimic the bilayered structure of tree bark, the natural protective layer of the tree. In a simplified view, natural bark can be considered as the superposition of an external homogeneous and non-porous layer (outer bark) and a porous substructure layer (inner bark). This work is a first step for the future development of bio-based biomimetic wood coatings. The film had a bark-like appearance and its total density, bulk density and porosity were similar to values measured in natural bark. Furthermore, the structural characteristics of the studied film, namely specific surface area (BET) and pore size distribution, as well as the performance of the water adsorption ability were investigated and discussed
    corecore