6 research outputs found

    Antiretroviral Choice for HIV Impacts Antimalarial Exposure and Treatment Outcomes in Ugandan Children.

    Get PDF
    BACKGROUND: The optimal treatment of malaria in human immunodeficiency virus (HIV)-infected children requires consideration of critical drug-drug interactions in coinfected children, as these may significantly impact drug exposure and clinical outcomes. METHODS: We conducted an intensive and sparse pharmacokinetic/pharmacodynamic study in Uganda of the most widely adopted artemisinin-based combination therapy, artemether-lumefantrine. HIV-infected children on 3 different first-line antiretroviral therapy (ART) regimens were compared to HIV-uninfected children not on ART, all of whom required treatment for Plasmodium falciparum malaria. Pharmacokinetic sampling for artemether, dihydroartemisinin, and lumefantrine exposure was conducted through day 21, and associations between drug exposure and outcomes through day 42 were investigated. RESULTS: One hundred forty-five and 225 children were included in the intensive and sparse pharmacokinetic analyses, respectively. Compared with no ART, efavirenz (EFV) reduced exposure to all antimalarial components by 2.1- to 3.4-fold; lopinavir/ritonavir (LPV/r) increased lumefantrine exposure by 2.1-fold; and nevirapine reduced artemether exposure only. Day 7 concentrations of lumefantrine were 10-fold lower in children on EFV vs LPV/r-based ART, changes that were associated with an approximate 4-fold higher odds of recurrent malaria by day 28 in those on EFV vs LPV/r-based ART. CONCLUSIONS: The choice of ART in children living in a malaria-endemic region has highly significant impacts on the pharmacokinetics and pharmacodynamics of artemether-lumefantrine treatment. EFV-based ART reduces all antimalarial components and is associated with the highest risk of recurrent malaria following treatment. For those on EFV, close clinical follow-up for recurrent malaria following artemether-lumefantrine treatment, along with the study of modified dosing regimens that provide higher exposure, is warranted

    Artemether-Lumefantrine Pharmacokinetics and Clinical Response Are Minimally Altered in Pregnant Ugandan Women Treated for Uncomplicated Falciparum Malaria.

    Get PDF
    Artemether-lumefantrine is a first-line regimen for the treatment of uncomplicated malaria during the second and third trimesters of pregnancy. Previous studies have reported changes in the pharmacokinetics and clinical outcomes following treatment with artemether-lumefantrine in pregnant women compared to nonpregnant adults; however, the results are inconclusive. We conducted a study in rural Uganda to compare the pharmacokinetics of artemether-lumefantrine and the treatment responses between 30 pregnant women and 30 nonpregnant adults with uncomplicated Plasmodium falciparum malaria. All participants were uninfected with HIV, treated with a six-dose regimen of artemether-lumefantrine, and monitored clinically for 42 days. The pharmacokinetics of artemether, its metabolite dihydroartemisinin, and lumefantrine were evaluated for 21 days following treatment. We found no significant differences in the overall pharmacokinetics of artemether, dihydroartemisinin, or lumefantrine in a direct comparison of pregnant women to nonpregnant adults, except for a statistically significant but small difference in the terminal elimination half-lives of both dihydroartemisinin and lumefantrine. There were seven PCR-confirmed reinfections (5 pregnant and 2 nonpregnant participants). The observation of a shorter terminal half-life for lumefantrine may have contributed to a higher frequency of reinfection or a shorter posttreatment prophylactic period in pregnant women than in nonpregnant adults. While the comparable overall pharmacokinetic exposure is reassuring, studies are needed to further optimize antimalarial efficacy in pregnant women, particularly in high-transmission settings and because of emerging drug resistance. (This study is registered at ClinicalTrials.gov under registration no. NCT01717885.)

    Parasite Clearance and Artemether Pharmacokinetics Parameters Over the Course of Artemether-Lumefantrine Treatment for Malaria in Human Immunodeficiency Virus (HIV)-Infected and HIV-Uninfected Ugandan Children.

    No full text
    BackgroundArtemisinins are primarily responsible for initial parasite clearance. Antimalarial pharmacokinetics (PK), human immunodeficiency virus (HIV) infection, and antiretroviral therapy have been shown to impact treatment outcomes, although their impact on early parasite clearance in children has not been well characterized.MethodsParasite clearance parameters were generated from twice-daily blood smears in HIV-infected and HIV-uninfected Ugandan children treated with artemether-lumefantrine (AL). Artemether and dihydroartemisinin (DHA) area-under-the-curve from 0-8 hours (AUC0-8hr) after the 1st AL dose was compared with AUC0-8hr after the last (6th) dose in a concurrently enrolled cohort. The association between post-1st dose artemisinin AUC0-8hr and parasite clearance was assessed.ResultsParasite clearance was longer in HIV-infected versus HIV-uninfected children (median, 3.5 vs 2.8 hours; P = .003). Artemether AUC0-8hr was 3- to 4-fold lower after the 6th dose versus the 1st dose of AL in HIV-infected children on nevirapine- or lopinavir/ritionavir-based regimens and in HIV-uninfected children (P ≤ .002, 1st vs 6th-dose comparisons). Children on efavirenz exhibited combined post-1st dose artemether/DHA exposure that was significantly lower than those on lopinavir/ritonavir and HIV-uninfected children. Multiple regression analysis supported that the effect of artemether/DHA exposure on parasite clearance was significantly moderated by HIV status.ConclusionsParasite clearance rates remain rapid in Uganda and were not found to associate with PK exposure. However, significant decreases in artemisinin PK with repeated dosing in nearly all children, coupled with small, but significant increase in parasite clearance half-life in those with HIV, may have important implications for AL efficacy, particularly because reports of artemisinin resistance are increasing
    corecore