350 research outputs found
A microstructural lattice model for strain oriented problems: A combined Monte Carlo finite element technique
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature
Grain-boundary grooving and agglomeration of alloy thin films with a slow-diffusing species
We present a general phase-field model for grain-boundary grooving and
agglomeration of polycrystalline alloy thin films. In particular, we study the
effects of slow-diffusing species on grooving rate. As the groove grows, the
slow species becomes concentrated near the groove tip so that further grooving
is limited by the rate at which it diffuses away from the tip. At early times
the dominant diffusion path is along the boundary, while at late times it is
parallel to the substrate. This change in path strongly affects the
time-dependence of grain boundary grooving and increases the time to
agglomeration. The present model provides a tool for agglomeration-resistant
thin film alloy design. keywords: phase-field, thermal grooving, diffusion,
kinetics, metal silicidesComment: 4 pages, 6 figure
Apparent hysteresis in a driven system with self-organized drag
Interaction between extended defects and impurities lies at the heart of many
physical phenomena in materials science. Here we revisit the ubiquitous problem
of the driven motion of an extended defect in a field of mobile impurities,
which self-organize to cause drag on the defect. Under a wide range of external
conditions (e.g. drive), the defect undergoes a transition from slow to fast
motion. This transition is commonly hysteretic: the defect either moves slow or
fast, depending on the initial condition. We explore such hysteresis via a
kinetic Monte Carlo spin simulation combined with computational
coarse-graining. Obtaining bifurcation diagrams (stable and unstable branches),
we map behavior regimes in parameter space. Estimating fast-slow switching
times, we determine whether a simulation or experiment will exhibit hysteresis
depending on observation conditions. We believe our approach is applicable to
quantifying hysteresis in a wide range of physical contexts.Comment: 11 pages (preprint format), 4 color figures in separate file
Phase-field model for grain boundary grooving in multi-component thin films
Polycrystalline thin films can be unstable with respect to island formation
(agglomeration) through grooving where grain boundaries intersect the free
surface and/or thin film-substrate interface. We develop a phase-field model to
study the evolution of the phases, composition, microstructure and morphology
of such thin films. The phase-field model is quite general, describing
compounds and solid solution alloys with sufficient freedom to choose
solubilities, grain boundary and interface energies, and heats of segregation
to all interfaces. We present analytical results which describe the interface
profiles, with and without segregation, and confirm them using numerical
simulations. We demonstrate that the present model accurately reproduces the
theoretical grain boundary groove angles both at and far from equilibrium. As
an example, we apply the phase-field model to the special case of a Ni(Pt)Si
(Ni/Pt silicide) thin film on an initially flat silicon substrate.Comment: 12 pages, 5 figures, submitted to Modelling Simulation Mater. Sci.
En
Solid-Liquid Phase Diagrams for Binary Metallic Alloys: Adjustable Interatomic Potentials
We develop a new approach to determining LJ-EAM potentials for alloys and use
these to determine the solid-liquid phase diagrams for binary metallic alloys
using Kofke's Gibbs-Duhem integration technique combined with semigrand
canonical Monte Carlo simulations. We demonstrate that it is possible to
produce a wide-range of experimentally observed binary phase diagrams (with no
intermetallic phases) by reference to the atomic sizes and cohesive energies of
the two elemental materials. In some cases, it is useful to employ a single
adjustable parameter to adjust the phase diagram (we provided a good choice for
this free parameter). Next, we perform a systematic investigation of the effect
of relative atomic sizes and cohesive energies of the elements on the binary
phase diagrams. We then show that this approach leads to good agreement with
several experimental binary phase diagrams. The main benefit of this approach
is not the accurately reproduction of experimental phase diagrams, but rather
to provide a method by which material properties can be continuously changed in
simulations studies. This is one of the keys to the use of atomistic
simulations to understand mechanisms and properties in a manner not available
to experiment
- …
