research

Phase-field model for grain boundary grooving in multi-component thin films

Abstract

Polycrystalline thin films can be unstable with respect to island formation (agglomeration) through grooving where grain boundaries intersect the free surface and/or thin film-substrate interface. We develop a phase-field model to study the evolution of the phases, composition, microstructure and morphology of such thin films. The phase-field model is quite general, describing compounds and solid solution alloys with sufficient freedom to choose solubilities, grain boundary and interface energies, and heats of segregation to all interfaces. We present analytical results which describe the interface profiles, with and without segregation, and confirm them using numerical simulations. We demonstrate that the present model accurately reproduces the theoretical grain boundary groove angles both at and far from equilibrium. As an example, we apply the phase-field model to the special case of a Ni(Pt)Si (Ni/Pt silicide) thin film on an initially flat silicon substrate.Comment: 12 pages, 5 figures, submitted to Modelling Simulation Mater. Sci. En

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019