226 research outputs found
Systematic shell-model study of Cd isotopes
We have performed shell-model calculations for the systematic study of
even-even Cd isotopes with NNLO interaction
derived from coupled cluster approach, where Se is taken as an inert
core. Results for these Cd-isotopes using a realistic effective shell-model
interaction, derived from the G-matrix approach with core Sr, have also
been shown. We have compared our calculated low-lying excited energy spectra
and electromagnetic properties with the experimental data. On the basis of
recently available experimental data, we have also predicted spins and parities
corresponding to unconfirmed states. We have also reported the properties of
isomeric states in Cd isotopes.Comment: 26 pages, 14 figure
Vacancy-mediated mechanism of nitrogen substitution in carbon nanotubes
Nitrogen substitution reaction in a graphene sheet and carbon nanotubes of different diameter are investigated using the generalized tight-binding molecular dynamics method. The formation of a vacancy in curved graphene sheet or a carbon nanotube is found to cause a curvature dependent local reconstruction of the surface. Our simulations and analysis show that vacancy mediated N substitution (rather than N chemisorption) is favored on the surface of nanotubes with diameter larger than 8 nm. This predicted value of the critical minimum diameter for N incorporation is confirmed by experimental results presented on nitrogen-doped multiwalled nanotubes with [approximate]5 at. % nitrogen prepared by the thermal chemical vapor deposition process
Planar Airy beam light-sheet for two-photon microscopy
We demonstrate the first planar Airy light-sheet microscope. Fluorescence
light-sheet microscopy has become the method of choice to study large
biological samples with cellular or sub-cellular resolution. The
propagation-invariant Airy beam enables a ten-fold increase in field-of-view
with single-photon excitation; however, the characteristic asymmetry of the
light-sheet limits its potential for multi-photon excitation. Here we show how
a planar light-sheet can be formed from the curved propagation-invariant Airy
beam. The resulting symmetric light sheet excites two-photon fluorescence
uniformly across an extended field-of-view without the need for deconvolution.
We demonstrate the method for rapid two-photon imaging of large volumes of
neuronal tissue.Comment: 7 pages, 4 figure
Nanotechnology Synergised Immunoengineering for Cancer
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic. As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies avail in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment
Δ<sup>9</sup>-tetrahydrocannabinol and 2-AG decreases neurite outgrowth and differentially affects ERK1/2 and Akt signaling in hiPSC-derived cortical neurons
Endocannabinoids regulate different aspects of neurodevelopment. In utero exposure to the exogenous psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC), has been linked with abnormal cortical development in animal models. However, much less is known about the actions of endocannabinoids in human neurons. Here we investigated the effect of the endocannabinoid 2-arachidonoyl glycerol (2AG) and Δ9-THC on the development of neuronal morphology and activation of signaling kinases, in cortical neurons derived from human induced pluripotent stem cells (hiPSCs). Our data indicate that the cannabinoid type 1 receptor (CB1R), but not the cannabinoid 2 receptor (CB2R), GPR55 or TRPV1 receptors, is expressed in young, immature hiPSC-derived cortical neurons. Consistent with previous reports, 2AG and Δ9-THC negatively regulated neurite outgrowth. Interestingly, acute exposure to both 2AG and Δ9-THC inhibited phosphorylation of serine/threonine kinase extracellular signal-regulated protein kinases (ERK1/2), whereas Δ9-THC also reduced phosphorylation of Akt (aka PKB). Moreover, the CB1R inverse agonist SR 141716A attenuated the decrease in neurite outgrowth and ERK1/2 phosphorylation induced by 2AG and Δ9-THC. Taken together, our data suggest that hiPSC-derived cortical neurons express CB1Rs and are responsive to exogenous cannabinoids. Thus, hiPSC-neurons may represent a good cellular model for investigating the role of the endocannabinoid system in regulating cellular processes in developing human neurons
Recommended from our members
Application of Airy beam light sheet microscopy to examine early neurodevelopmental structures in 3D hiPSC-derived human cortical spheroids.
BACKGROUND: The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes-in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. RESULTS: Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. CONCLUSION: We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro
Liposomal nanotheranostics for multimode targeted in vivo bioimaging and near‐infrared light mediated cancer therapy
Developing a nanotheranostic agent with better image resolution and high accumulation into solid tumor microenvironment is a challenging task. Herein, we established a light mediated phototriggered strategy for enhanced tumor accumulation of nanohybrids. A multifunctional liposome based nanotheranostics loaded with gold nanoparticles (AuNPs) and emissive graphene quantum dots (GQDs) were engineered named as NFGL. Further, doxorubicin hydrochloride was encapsulated in NFGL to exhibit phototriggered chemotherapy and functionalized with folic acid targeting ligands. Encapsulated agents showed imaging bimodality for in vivo tumor diagnosis due to their high contrast and emissive nature. Targeted NFGL nanohybrids demonstrated near infrared light (NIR, 750 nm) mediated tumor reduction because of generated heat and Reactive Oxygen Species (ROS). Moreover, NFGL nanohybrids exhibited remarkable ROS scavenging ability as compared to GQDs loaded liposomes validated by antitumor study. Hence, this approach and engineered system could open new direction for targeted imaging and cancer therapy.publishersversionpublishe
MicroRNA Regulation of Cell Lineages in Mouse and Human Embryonic Stem Cells
SummaryCell fate decisions of pluripotent embryonic stem (ES) cells are dictated by activation and repression of lineage-specific genes. Numerous signaling and transcriptional networks progressively narrow and specify the potential of ES cells. Whether specific microRNAs help refine and limit gene expression and, thereby, could be used to manipulate ES cell differentiation has largely been unexplored. Here, we show that two serum response factor (SRF)-dependent muscle-specific microRNAs, miR-1 and miR-133, promote mesoderm formation from ES cells but have opposing functions during further differentiation into cardiac muscle progenitors. Furthermore, miR-1 and miR-133 were potent repressors of nonmuscle gene expression and cell fate during mouse and human ES cell differentiation. miR-1's effects were in part mediated by translational repression of the Notch ligand Delta-like 1 (Dll-1). Our findings indicate that muscle-specific miRNAs reinforce the silencing of nonmuscle genes during cell lineage commitment and suggest that miRNAs may have general utility in regulating cell-fate decisions from pluripotent ES cells
Recommended from our members
EM-mosaic detects mosaic point mutations that contribute to congenital heart disease.
BackgroundThe contribution of somatic mosaicism, or genetic mutations arising after oocyte fertilization, to congenital heart disease (CHD) is not well understood. Further, the relationship between mosaicism in blood and cardiovascular tissue has not been determined.MethodsWe developed a new computational method, EM-mosaic (Expectation-Maximization-based detection of mosaicism), to analyze mosaicism in exome sequences derived primarily from blood DNA of 2530 CHD proband-parent trios. To optimize this method, we measured mosaic detection power as a function of sequencing depth. In parallel, we analyzed our cohort using MosaicHunter, a Bayesian genotyping algorithm-based mosaic detection tool, and compared the two methods. The accuracy of these mosaic variant detection algorithms was assessed using an independent resequencing method. We then applied both methods to detect mosaicism in cardiac tissue-derived exome sequences of 66 participants for which matched blood and heart tissue was available.ResultsEM-mosaic detected 326 mosaic mutations in blood and/or cardiac tissue DNA. Of the 309 detected in blood DNA, 85/97 (88%) tested were independently confirmed, while 7/17 (41%) candidates of 17 detected in cardiac tissue were confirmed. MosaicHunter detected an additional 64 mosaics, of which 23/46 (50%) among 58 candidates from blood and 4/6 (67%) of 6 candidates from cardiac tissue confirmed. Twenty-five mosaic variants altered CHD-risk genes, affecting 1% of our cohort. Of these 25, 22/22 candidates tested were confirmed. Variants predicted as damaging had higher variant allele fraction than benign variants, suggesting a role in CHD. The estimated true frequency of mosaic variants above 10% mosaicism was 0.14/person in blood and 0.21/person in cardiac tissue. Analysis of 66 individuals with matched cardiac tissue available revealed both tissue-specific and shared mosaicism, with shared mosaics generally having higher allele fraction.ConclusionsWe estimate that ~ 1% of CHD probands have a mosaic variant detectable in blood that could contribute to cardiac malformations, particularly those damaging variants with relatively higher allele fraction. Although blood is a readily available DNA source, cardiac tissues analyzed contributed ~ 5% of somatic mosaic variants identified, indicating the value of tissue mosaicism analyses
- …