116 research outputs found

    A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head

    Full text link
    Purpose: To develop a deep learning approach to de-noise optical coherence tomography (OCT) B-scans of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device (Spectralis) for both eyes of 20 subjects. For each eye, single-frame (without signal averaging), and multi-frame (75x signal averaging) volume scans were obtained. A custom deep learning network was then designed and trained with 2,328 "clean B-scans" (multi-frame B-scans), and their corresponding "noisy B-scans" (clean B-scans + gaussian noise) to de-noise the single-frame B-scans. The performance of the de-noising algorithm was assessed qualitatively, and quantitatively on 1,552 B-scans using the signal to noise ratio (SNR), contrast to noise ratio (CNR), and mean structural similarity index metrics (MSSIM). Results: The proposed algorithm successfully denoised unseen single-frame OCT B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean SNR increased from 4.02±0.684.02 \pm 0.68 dB (single-frame) to 8.14±1.038.14 \pm 1.03 dB (denoised). For all the ONH tissues, the mean CNR increased from 3.50±0.563.50 \pm 0.56 (single-frame) to 7.63±1.817.63 \pm 1.81 (denoised). The MSSIM increased from 0.13±0.020.13 \pm 0.02 (single frame) to 0.65±0.030.65 \pm 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Conclusions: Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort

    SNAVA—A real-time multi-FPGA multi-model spiking neural network simulation architecture

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities.Peer ReviewedPostprint (author's final draft

    Deep learning algorithms to isolate and quantify the structures of the anterior segment in optical coherence tomography images

    Get PDF
    Background/Aims Accurate isolation and quantification of intraocular dimensions in the anterior segment (AS) of the eye using optical coherence tomography (OCT) images is important in the diagnosis and treatment of many eye diseases, especially angle-closure glaucoma. Method In this study, we developed a deep convolutional neural network (DCNN) for the localisation of the scleral spur; moreover, we introduced an information-rich segmentation approach for this localisation problem. An ensemble of DCNNs for the segmentation of AS structures (iris, corneosclera shell adn anterior chamber) was developed. Based on the results of two previous processes, an algorithm to automatically quantify clinically important measurements were created. 200 images from 58 patients (100 eyes) were used for testing. Results With limited training data, the DCNN was able to detect the scleral spur on unseen anterior segment optical coherence tomography (ASOCT) images as accurately as an experienced ophthalmologist on the given test dataset and simultaneously isolated the AS structures with a Dice coefficient of 95.7%. We then automatically extracted eight clinically relevant ASOCT measurements and proposed an automated quality check process that asserts the reliability of these measurements. When combined with an OCT machine capable of imaging multiple radial sections, the algorithms can provide a more complete objective assessment. The total segmentation and measurement time for a single scan is less than 2 s. Conclusion This is an essential step towards providing a robust automated framework for reliable quantification of ASOCT scans, for applications in the diagnosis and management of angle-closure glaucoma

    Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment

    Get PDF
    The majority of transport electrification studies, examining the demand and sustainability of critical metals, have focused on light-duty vehicles. Heavy-duty vehicles have often been excluded from the research scope due to their smaller vehicle stock and slower pace of electrification. This study fills this research gap by evaluating the lithium resource impacts from electrification of the heavy-duty segment at the global level. Our results show that a mass electrification of the heavy-duty segment on top of the light-duty segment would substantially increase the lithium demand and impose further strain on the global lithium supply. The significant impact is attributed to the large single-vehicle battery capacity required by heavy-duty vehicles and the expected battery replacement needed within the lifetime of heavy-duty vehicles. We suggest that the ambition of mass electrification in the heavy-duty segment should be treated with cautions for both policy makers and entrepreneurs

    DeshadowGAN: a deep learning approach to remove shadows from optical coherence tomography images

    Get PDF
    Purpose: To remove blood vessel shadows from optical coherence tomography (OCT) images of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device for both eyes of 13 subjects. A custom generative adversarial network (named DeshadowGAN) was designed and trained with 2328 B-scans in order to remove blood vessel shadows in unseen B-scans. Image quality was assessed qualitatively (for artifacts) and quantitatively using the intralayer contrast—a measure of shadow visibility ranging from 0 (shadow-free) to 1 (strong shadow). This was computed in the retinal nerve fiber layer (RNFL), the inner plexiform layer (IPL), the photoreceptor (PR) layer, and the retinal pigment epithelium (RPE) layer. The performance of DeshadowGAN was also compared with that of compensation, the standard for shadow removal. Results: DeshadowGAN decreased the intralayer contrast in all tissue layers. On average, the intralayer contrast decreased by 33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and 43.0 ± 19.5% for the RNFL, IPL, PR layer, and RPE layer, respectively, indicating successful shadow removal across all depths. Output images were also free from artifacts commonly observed with compensation. Conclusions: DeshadowGAN significantly corrected blood vessel shadows in OCT images of the ONH. Our algorithm may be considered as a preprocessing step to improve the performance of a wide range of algorithms including those currently being used for OCT segmentation, denoising, and classification. Translational Relevance: DeshadowGAN could be integrated to existing OCT devices to improve the diagnosis and prognosis of ocular pathologies

    OCT-GAN: single step shadow and noise removal from optical coherence tomography images of the human optic nerve head

    Get PDF
    Speckle noise and retinal shadows within OCT B-scans occlude important edges, fine textures and deep tissues, preventing accurate and robust diagnosis by algorithms and clinicians. We developed a single process that successfully removed both noise and retinal shadows from unseen single-frame B-scans within 10.4ms. Mean average gradient magnitude (AGM) for the proposed algorithm was 57.2% higher than current state-of-the-art, while mean peak signal to noise ratio (PSNR), contrast to noise ratio (CNR), and structural similarity index metric (SSIM) increased by 11.1%, 154% and 187% respectively compared to single-frame B-scans. Mean intralayer contrast (ILC) improvement for the retinal nerve fiber layer (RNFL), photoreceptor layer (PR) and retinal pigment epithelium (RPE) layers decreased from 0.362 ± 0.133 to 0.142 ± 0.102, 0.449 ± 0.116 to 0.0904 ± 0.0769, 0.381 ± 0.100 to 0.0590 ± 0.0451 respectively. The proposed algorithm reduces the necessity for long image acquisition times, minimizes expensive hardware requirements and reduces motion artifacts in OCT images
    corecore