51 research outputs found
Targeting Glioma Stem Cells by Functional Inhibition of a Prosurvival OncomiR-138 in Malignant Gliomas
SummaryMalignant gliomas are the most aggressive forms of brain tumors, associated with high rates of morbidity and mortality. Recurrence and tumorigenesis are attributed to a subpopulation of tumor-initiating glioma stem cells (GSCs) that are intrinsically resistant to therapy. Initiation and progression of gliomas have been linked to alterations in microRNA expression. Here, we report the identification of microRNA-138 (miR-138) as a molecular signature of GSCs and demonstrate a vital role for miR-138 in promoting growth and survival of bona fide tumor-initiating cells with self-renewal potential. Sequence-specific functional inhibition of miR-138 prevents tumorsphere formation in vitro and impedes tumorigenesis in vivo. We delineate the components of the miR-138 regulatory network by loss-of-function analysis to identify specific regulators of apoptosis. Finally, the higher expression of miR-138 in GSCs compared to non-neoplastic tissue and association with tumor recurrence and survival highlights the clinical significance of miR-138 as a prognostic biomarker and a therapeutic target for treatment of malignant gliomas
Recommended from our members
Evaluation of integrin αvβ6 cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis.
Advances in precision molecular imaging promise to transform our ability to detect, diagnose and treat disease. Here, we describe the engineering and validation of a new cystine knot peptide (knottin) that selectively recognizes human integrin αvβ6 with single-digit nanomolar affinity. We solve its 3D structure by NMR and x-ray crystallography and validate leads with 3 different radiolabels in pre-clinical models of cancer. We evaluate the lead tracer's safety, biodistribution and pharmacokinetics in healthy human volunteers, and show its ability to detect multiple cancers (pancreatic, cervical and lung) in patients at two study locations. Additionally, we demonstrate that the knottin PET tracers can also detect fibrotic lung disease in idiopathic pulmonary fibrosis patients. Our results indicate that these cystine knot PET tracers may have potential utility in multiple disease states that are associated with upregulation of integrin αvβ6
Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions
In mammals, parathyroid hormone (PTH) is a key regulator of extracellular calcium and inorganic phosphorus homeostasis. Although the parathyroid glands were thought to be the only source of PTH, extra-parathyroid PTH production in the thymus, which shares a common origin with parathyroids during organogenesis, has been proposed to provide an auxiliary source of PTH, resulting in a higher than expected survival rate for aparathyroid Gcm2−/− mutants. However, the developmental ontogeny and cellular identity of these “thymic” PTH–expressing cells is unknown. We found that the lethality of aparathyroid Gcm2−/− mutants was affected by genetic background without relation to serum PTH levels, suggesting a need to reconsider the physiological function of thymic PTH. We identified two sources of extra-parathyroid PTH in wild-type mice. Incomplete separation of the parathyroid and thymus organs during organogenesis resulted in misplaced, isolated parathyroid cells that were often attached to the thymus; this was the major source of thymic PTH in normal mice. Analysis of thymus and parathyroid organogenesis in human embryos showed a broadly similar result, indicating that these results may provide insight into human parathyroid development. In addition, medullary thymic epithelial cells (mTECs) express PTH in a Gcm2-independent manner that requires TEC differentiation and is consistent with expression as a self-antigen for negative selection. Genetic or surgical removal of the thymus indicated that thymus-derived PTH in Gcm2−/− mutants did not provide auxiliary endocrine function. Our data show conclusively that the thymus does not serve as an auxiliary source of either serum PTH or parathyroid function. We further show that the normal process of parathyroid organogenesis in both mice and humans leads to the generation of multiple small parathyroid clusters in addition to the main parathyroid glands, that are the likely source of physiologically relevant “thymic PTH.
Establishment of cell polarity in zebrafish: Role of Staufen and GRB2 in cell migration
Ph.DDOCTOR OF PHILOSOPH
CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling.
Understanding how autocrine/paracrine factors regulate neural stem cell (NSC) survival and growth is fundamental to the utilization of these cells for therapeutic applications and as cellular models for the brain. In vitro, NSCs can be propagated along with neural progenitors (NPs) as neurospheres (nsphs). The nsph conditioned medium (nsph-CM) contains cell-secreted factors that can regulate NSC behavior. However, the identity and exact function of these factors within the nsph-CM has remained elusive. We analyzed the nsph-CM by mass spectrometry and identified DSD-1-proteoglycan, a chondroitin sulfate proteoglycan (CSPG), apolipoprotein E (ApoE) and cystatin C as components of the nsph-CM. Using clonal assays we show that CSPG and ApoE are responsible for the ability of the nsph-CM to stimulate nsph formation whereas cystatin C is not involved. Clonal nsphs generated in the presence of CSPG show more than four-fold increase in NSCs. Thus CSPG specifically enhances the survival of NSCs. CSPG also stimulates the survival of embryonic stem cell (ESC)-derived NSCs, and thus may be involved in the developmental transition of ESCs to NSCs. In addition to its role in NSC survival, CSPG maintains the three dimensional structure of nsphs. Lastly, CSPG's effects on NSC survival may be mediated by enhanced signaling via EGFR, JAK/STAT3 and PI3K/Akt pathways
Specific Targeting of Melanotic Cells with Peptide Ligated Photosensitizers for Photodynamic Therapy
A strategy combining covalent conjugation of photosensitizers to a peptide ligand directed to the melanocortin 1 (MC1) receptor with the application of sequential LED light dosage at near-IR wavelengths was developed to achieve specific cytotoxicity to melanocytes and melanoma (MEL) with minimal collateral damage to surrounding cells such as keratinocytes (KER). The specific killing of melanotic cells by targeted photodynamic therapy (PDT) described in this study holds promise as a potentially effective adjuvant therapeutic method to control benign skin hyperpigmentation or superficial melanotic malignancy such as Lentigo Maligna Melanoma (LMM).ISSN:2045-232
- …