31 research outputs found

    Viable Influenza A Virus in Airborne Particles Expelled During Coughs Versus Exhalations

    Get PDF
    Background To prepare for a possible influenza pandemic, a better understanding of the potential for the airborne transmission of influenza from person to person is needed. Objectives The objective of this study was to directly compare the generation of aerosol particles containing viable influenza virus during coughs and exhalations. Methods Sixty-one adult volunteer outpatients with influenza-like symptoms were asked to cough and exhale three times into a spirometer. Aerosol particles produced during coughing and exhalation were collected into liquid media using aerosol samplers.The samples were tested for the presence of viable influenza virus using a viral replication assay (VRA). Results Fifty-three test subjects tested positive for influenza A virus. Of these, 28 (53%) produced aerosol particles containing viable influenza A virus during coughing, and 22 (42%) produced aerosols with viable virus during exhalation. Thirteen subjects had both cough aerosol and exhalation aerosol samples that contained viable virus, 15 had positive cough aerosol samples but negative exhalation samples, and 9 had positive exhalation samples but negative cough samples. Conclusions Viable influenza A virus was detected more often in cough aerosol particles than in exhalation aerosol particles, but the difference was not large. Because individuals breathe much more often than they cough, these results suggest that breathing may generate more airborne infectious material than coughing over time. However, both respiratory activities could be important in airborne influenza transmission. Our results are also consistent with the theory that much of the aerosol containing viable influenza originates deep in the lung

    MicroRNA-221 Modulates RSV Replication in Human Bronchial Epithelium by Targeting NGF Expression

    Get PDF
    Background: Early-life infection by respiratory syncytial virus (RSV) is associated with aberrant expression of the prototypical neurotrophin nerve growth factor (NGF) and its cognate receptors in human bronchial epithelium. However, the chain of events leading to this outcome, and its functional implications for the progression of the viral infection, has not been elucidated. This study sought to test the hypothesis that RSV infection modulates neurotrophic pathways in human airways by silencing the expression of specific microRNAs (miRNAs), and that this effect favors viral growth by interfering with programmed death of infected cells. Methodology: Human bronchial epithelial cells infected with green fluorescent protein-expressing RSV (rgRSV) were screened with multiplex qPCR arrays, and miRNAs significantly affected by the virus were analyzed for homology with mRNAs encoding neurotrophic factors or receptors. Mimic sequences of selected miRNAs were transfected into noninfected bronchial cells to confirm the role of each of them in regulating neurotrophins expression at the gene and protein level, and to study their influence on cell cycle and viral replication. Principal Findings: RSV caused downregulation of 24 miRNAs and upregulation of 2 (p,0.01). Homology analysis of microarray data revealed that 6 of those miRNAs exhibited a high degree of complementarity to NGF and/or one of its cognate receptors TrKA and p75 NTR. Among the selected miRNAs, miR-221 was significantly downregulated by RSV and it

    NGF Is an Essential Survival Factor for Bronchial Epithelial Cells during Respiratory Syncytial Virus Infection

    Get PDF
    Background: Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV), but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways) and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia. Methodology: Expression of neurotrophic factors (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF) and receptors (trkA, trkB, p75) was analyzed at the protein level by immunofluorescence and flow cytometry and at the mRNA level by real-time PCR. Targeted siRNA was utilized to blunt NGF expression, and its effect on virus-induced apoptosis/ necrosis was evaluated by flow cytometry following annexin V/7-AAD staining. Principal Findings: RSV infection was more efficient in cells from more distal (bronchial) vs. more proximal origin. In bronchial cells, RSV infection induced transcript and protein overexpression of NGF and its high-affinity receptor trkA, with concomitant downregulation of the low-affinity p75 NTR. In contrast, tracheal cells exhibited an increase in BDNF, trkA and trkB, and nasal cells increased only trkA. RSV-infected bronchial cells transfected with NGF-specific siRNA exhibited decreased trkA and increased p75 NTR expression. Furthermore, the survival of bronchial epithelial cells was dramaticall

    Differential Expression of Serum Exosome microRNAs and Cytokines in Influenza A and B Patients Collected in the 2016 and 2017 Influenza Seasons

    No full text
    MicroRNAs (miRNAs) have remarkable stability and are key regulators of mRNA transcripts for several essential proteins required for the survival of cells and replication of the virus. Exosomes are thought to play an essential role in intercellular communications by transporting proteins and miRNAs, making them ideal in the search for biomarkers. Evidence suggests that miRNAs are involved in the regulation of influenza virus replication in many cell types. During the 2016 and 2017 influenza season, we collected blood samples from 54 patients infected with influenza and from 30 healthy volunteers to identify the potential role of circulating serum miRNAs and cytokines in influenza infection. Data comparing the exosomal miRNAs in patients with influenza B to healthy volunteers showed 76 miRNAs that were differentially expressed (p < 0.05). In contrast, 26 miRNAs were differentially expressed between patients with influenza A (p < 0.05) and the controls. Of these miRNAs, 11 were commonly expressed in both the influenza A and B patients. Interferon (IFN)-inducing protein 10 (IP-10), which is involved in IFN synthesis during influenza infection, showed the highest level of expression in both influenza A and B patients. Influenza A patients showed increased expression of IFNα, GM-CSF, interleukin (IL)-13, IL-17A, IL-1β, IL-6 and TNFα, while influenza B induced increased levels of EGF, G-CSF, IL-1α, MIP-1α, and TNF-β. In addition, hsa-miR-326, hsa-miR-15b-5p, hsa-miR-885, hsa-miR-122-5p, hsa-miR-133a-3p, and hsa-miR-150-5p showed high correlations to IL-6, IL-15, IL-17A, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) with both strains of influenza. Next-generation sequencing studies of H1N1-infected human lung small airway epithelial cells also showed similar pattern of expression of miR-375-5p, miR-143-3p, 199a-3p, and miR-199a-5p compared to influenza A patients. In summary, this study provides insights into the miRNA profiling in both influenza A and B virus in circulation and a novel approach to identify the early infections through a combination of cytokines and miRNA expression

    β-Defensin-1 Regulates Influenza Virus Infection in Human Bronchial Epithelial Cells through the STAT3 Signaling Pathway

    No full text
    Understanding the host response to influenza A virus (IAV) infection is vital for developing intervention strategies. The primary barriers for invading respiratory pathogens are the respiratory tract epithelial cells and antimicrobial proteins generated by these cells. The antimicrobial peptide, β-defensin-1, has antiviral activity against both enveloped and non-enveloped viruses. Significant downregulation of β-defensin1 gene (DEFB1) expression was observed when human bronchial epithelial cells (HBEpCs) were exposed to IAV. HBEpCs overexpressing DEFB1 caused a significant reduction in IAV, that was confirmed by IAV matrix gene analysis, plaque assay, and confocal microscopy. DEFB1 expression after transfection with two micro RNAs (miRNAs), hsa-miR-186-5p and hsa-miR-340-5p, provided evidence that DEFB1 expression could be modulated by these miRNAs and hsa-miR-186-5p had a higher binding efficiency with DEFB1. Overexpression of DEFB1 in IAV-infected HBEpCs led to increased NF-κB expression. In a PCR array analysis of 84 transcription factors, either overexpressing DEFB1 or siRNA silencing of DEFB1 expression significantly modulated the expression of signal transducer and activator of transcription 3 (STAT3). In addition, Ingenuity Pathway Analysis (IPA) integrated with PCR array data showed that the JAK1/STAT3 pathway was significantly altered in cells overexpressing DEFB1, suggesting this to be one of the pathways by which defensin regulates IAV replication in HBEpCs. In conclusion, the reduction in IAV copy number in DEFB1 overexpressing cells suggests that β-defensin-1 plays a key role in regulating IAV survival through STAT3 and is a potential target for antiviral drug development

    Influenza Virus-Induced Novel miRNAs Regulate the STAT Pathway

    No full text
    MicroRNAs (miRNAs) are essential regulators of gene expression in humans and can control pathogenesis and host–virus interactions. Notably, the role of specific host miRNAs during influenza virus infections are still ill-defined. The central goal of this study was to identify novel miRNAs and their target genes in response to influenza virus infections in airway epithelium. Human airway epithelial cells exposed to influenza A virus (IAV) induced several novel miRNAs that were identified using next-generation sequencing (NGS) and their target genes by biochemical methods. NGS analysis predicted forty-two RNA sequences as possible miRNAs based on computational algorithms. The expression patterns of these putative miRNAs were further confirmed using RT-PCR in human bronchial epithelial cells exposed to H1N1, H9N1(1P10), and H9N1 (1WF10) strains of influenza virus. A time-course study showed significant downregulation of put-miR-34 in H1N1 and put-miR-35 in H9N1(1P10)-infected cells, which is consistent with the NGS data. Additionally, put-miR-34 and put-miR-35 showed a high fold enrichment in an argonaute-immunoprecipitation assay compared to the controls, indicating their ability to form a complex with argonaute protein and RNA-induced silencing complex (RISC), which is a typical mode of action found with miRNAs. Our earlier studies have shown that the replication and survival of influenza virus is modulated by certain transcription factors such as NF-ĸB. To identify the target(s) of these putative miRNAs, we screened 84 transcription factors that have a role in viral pathogenesis. Cells transfected with mimic of the put-miR-34 showed a significant decrease in the expression of Signal Transducers and Activators of Transcription 3 (STAT3), whereas the inhibitor of put-miR-34 showed a significant increase in STAT3 expression and its phosphorylation. In addition, put-miR-34 had 76% homology to the untranslated region of STAT3. NGS and PCR array data submitted to the Gene Ontology project also predicted the role of transcription factors modulated by put-miR-34. Our data suggest that put-miR-34 may be a good target for antiviral therapy

    Programmed death of RSV-infected cells.

    No full text
    <p>(A) Non-infected cells transfected with hsa-miR-221 were more prone to apoptosis detected by annexin V staining compared to cells transfected with the negative control miRNA. In contrast, hsa-miR-221 transfection did not change the proportion of necrotic cells detected by propidium iodide (PI) staining. (B) After infection with rgRSV, approximately 3 times more hsa-miR-221-transfected cells became apoptotic compared to cells transfected with negative control miRNA. Left upper quadrant = necrotic cells; left lower quadrant = viable cells; right lower quadrant = apoptotic cells; right upper quadrant = late apoptotic cells in necrotic state.</p
    corecore