10 research outputs found

    A disease-causing mutation K240E disrupts ferroportin trafficking by SUMO (ferroportin SUMOylation)

    Get PDF
    Ferroportin (Fpn/IREG1/MTP1) is the only known transporter mediating iron efflux from epithelial cells and macrophages, and thus regulates how much iron is released into the circulation. Consequently, Fpn mutations are associated with haemochromatosis. Fpn itself is post-translationally regulated by hepcidin (Hepc) which induces its redistribution and degradation in a ubiquitin-dependent process. Together, the two proteins appear to be the nexus for iron homeostasis. Here we show that a rare gain-of-function mutation (K240E) that is associated with iron overload, impedes Fpn binding and subcellular trafficking by the small ubiquitin-like modifier (SUMO). Whereas wild-type Fpn is ensconced within vesicular bodies, the FpnK240E mutant appeared diffused within the cell when co-expressed with SUMO. Furthermore, compared with wild type Fpn, the sumoylation-defective mutant was constitutively-active, resulting in a lower intracellular labile iron pool than the former. These findings suggest that SUMO may regulate iron homeostasis by controlling Fpn trafficking

    Role of Dietary Flavonoids in Iron Homeostasis

    Get PDF
    Balancing systemic iron levels within narrow limits is critical for human health, as both iron deficiency and overload lead to serious disorders. There are no known physiologically controlled pathways to eliminate iron from the body and therefore iron homeostasis is maintained by modifying dietary iron absorption. Several dietary factors, such as flavonoids, are known to greatly affect iron absorption. Recent evidence suggests that flavonoids can affect iron status by regulating expression and activity of proteins involved the systemic regulation of iron metabolism and iron absorption. We provide an overview of the links between different dietary flavonoids and iron homeostasis together with the mechanism of flavonoids effect on iron metabolism. In addition, we also discuss the clinical relevance of state-of-the-art knowledge regarding therapeutic potential that flavonoids may have for conditions that are low in iron such as anaemia or iron overload diseases

    Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues

    Get PDF
    PURPOSE: There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal non-haem iron absorption in vivo, as well as its effect on factors known to be involved in systemic iron metabolism. METHODS: Rats were subject to gastric gavage and systemic quercetin administration. Treatments were followed with uptake studies using radiolabeled iron, serum iron and transferrin saturation measurements, LC-MS/MS analysis of quercetin metabolites in serum, determination of tissue non-haem iron content and analysis of gene expression of iron-related proteins. RESULTS: Both oral and intraperitoneal (IP) quercetin caused serum and tissue iron depletion by two means, first by increasing mucosal iron uptake and inhibiting iron efflux from duodenal mucosa, and second by decreasing levels of duodenal DMT1, Dcytb and FPN. Additionally, IP quercetin induced highly significant increased liver expression of hepcidin, a hormone known to inhibit intestinal iron uptake. CONCLUSIONS: Oral quercetin significantly inhibited iron absorption, while IP quercetin significantly affected iron-related genes. These results could lead to development of new effective ways of preventing and treating iron deficiency anaemia, the most widespread nutritional disorder in the world

    The effect of iron status on risk of coronary artery disease: a Mendelian randomization study

    Get PDF
    Objective—Iron status is a modifiable trait that has been implicated in cardiovascular disease. This study uses the Mendelian randomization technique to investigate whether there is any causal effect of iron status on risk of coronary artery disease (CAD). Approach and Results—A 2-sample Mendelian randomization approach is used to estimate the effect of iron status on CAD risk. Three loci (rs1800562 and rs1799945 in the HFE gene and rs855791 in TMPRSS6) that are each associated with serum iron, transferrin saturation, ferritin, and transferrin in a pattern suggestive of an association with systemic iron status are used as instruments. SNP (single-nucleotide polymorphism)-iron status association estimates are based on a genome-wide association study meta-analysis of 48 972 individuals. SNP-CAD estimates are derived by combining the results of a genome-wide association study meta-analysis of 60 801 CAD cases and 123 504 controls with those of a meta-analysis of 63 746 CAD cases and 130 681 controls obtained from Metabochip and genome-wide association studies. Combined Mendelian randomization estimates are obtained for each marker by pooling results across the 3 instruments. We find evidence of a protective effect of higher iron status on CAD risk (iron odds ratio, 0.94 per SD unit increase; 95% confidence interval, 0.88–1.00; P=0.039; transferrin saturation odds ratio, 0.95 per SD unit increase; 95% confidence interval, 0.91–0.99; P=0.027; log-transformed ferritin odds ratio, 0.85 per SD unit increase; 95% confidence interval, 0.73–0.98; P=0.024; and transferrin odds ratio, 1.08 per SD unit increase; 95% confidence interval, 1.01–1.16; P=0.034). Conclusions—This Mendelian randomization study supports the hypothesis that higher iron status reduces CAD risk. These findings may highlight a therapeutic target

    HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA-forming microsatellite

    No full text
    The Ity/Lsh/Bcg locus encodes the macrophage protein Slc11a1/Nramp1, which protects inbred mice against infection by diverse intracellular pathogens including Leishmania, Mycobacterium, and Salmonella. Human susceptibility to infectious and inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and tuberculosis, shows allelic association with a highly polymorphic regulatory, Z-DNA-forming microsatellite of (GT/AC)(n) dinucleotides within the proximal SLC11A1 promoter. We surmised that cis-acting allelic polymorphisms may underlie heritable differences in SLC11A1 expression and phenotypic variation in disease risk. However, it is unclear what may underlie such variation in SLC11A1 allele expression. Here we show that hypoxia-inducible Factor 1 (HIF-1) regulates allelic variation in SLC11A1 expression by binding directly to the microsatellite during macrophage activation by infection or inflammation. Targeted Hif-1 alpha ablation in murine macrophages attenuated Slc11a11 expression and responsiveness to S typhimurium infection. Our data also showed that HIF-1 may be functionally linked to complex prototypical inflammatory diseases associated with certain SLC11A1 alleles. As these alleles are highly polymorphic, our finding suggests that HIF-1 may influence heritable variation in SLC11A1-dependent innate resistance to infection and inflammation within and between populations. This report also suggests that microsatellites may play critical roles in the directional evolution of complex heritable traits by regulating gene expression phenotypes.11083039304
    corecore