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ABSTRACT 

Objective: Iron status is a modifiable trait that has been implicated in cardiovascular disease. 

This study uses the Mendelian randomization (MR) technique to investigate whether there is 

any causal effect of iron status on risk of coronary artery disease (CAD). 

Approach and Results: A two-sample MR approach is used to estimate the effect of iron 

status on CAD risk. Three loci (rs1800562 and rs1799945 in the HFE gene, and rs855791 in 

TMPRSS6) that are each associated with serum iron, transferrin saturation, ferritin and 

transferrin in a pattern suggestive of an association with systemic iron status are used as 

instruments. SNP-iron status association estimates are based on a GWAS meta-analysis of 

48,972 individuals. SNP-CAD estimates are derived by combining the results of a GWAS 

meta-analysis of 60,801 CAD cases and 123,504 controls with those of a meta-analysis of 

63,746 CAD cases and 130,681 controls obtained from Metabochip and GWAS studies. 

Combined MR estimates are obtained for each marker by pooling results across the three 

instruments. We find evidence of a protective effect of higher iron status on CAD risk (iron 

OR 0.94 per SD unit increase, 95%CI 0.88 to 1.00, p=0.039; transferrin saturation OR 0.95 

per SD unit increase, 95%CI 0.91 to 0.99, p=0.027; log-transformed ferritin OR 0.85 per SD 

unit increase, 95%CI 0.73 to 0.98, p=0.024; transferrin OR 1.08 per SD unit increase, 95%CI 

1.01 to 1.16, p=0.034). 

Conclusion: This MR study supports the hypothesis that higher iron status reduces CAD risk. 

These findings may highlight a therapeutic target.  
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ABBREVIATIONS 

CAD: coronary artery disease 

CHD: coronary heart disease 

CI: confidence interval 

GWAS: genome-wide association study 

IVW: inverse-variance weighted 

MR: Mendelian randomization 

RBC: red blood cell 

SNP: single-nucleotide polymorphism 
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INTRODUCTION 

Iron serves in a number of fundamental processes including erythropoiesis and cellular 

metabolism (1). Although iron status has been implicated in cardiovascular disease (1), the 

evidence for this is mixed. In support of a detrimental effect of higher iron status on 

cardiovascular risk, a reduced incidence of heart disease in premenopausal women as 

compared to men and postmenopausal women has been attributed to lower levels of stored 

iron (2). Higher iron stores have also been positively associated with risk factors for 

cardiovascular disease such as type 2 diabetes (3). Furthermore, genetic mutations resulting 

in hereditary haemochromatosis are associated with an increased incidence of 

cardiovascular morbidity (4), and chelation of heavy metals using disodium EDTA in patients 

that have experienced a recent myocardial infarction reduced adverse cardiovascular 

outcomes (5). However, these findings contrast with the results of a meta-analysis of 

observational studies that suggests a protective effect of higher iron status on the risk of 

coronary heart disease (CHD) (6). In addition, iron deficiency has been associated with 

increased mortality in patients with heart failure (7). 

It can be difficult to disentangle causal effects from spurious associations attributable to 

confounding and reverse causation in observational study. The Mendelian randomization 

(MR) approach can overcome these issues by using genetic variants such as single 

nucleotide polymorphisms (SNPs) as proxies or instruments for a phenotype or exposure of 

interest (8). It is because genetic variants are allocated randomly at the time of conception 

that this approach is not typically confounded by environmental, lifestyle factors or reverse 

causation. If the underlying assumptions of MR analysis are met (8), SNPs associated with 

iron status can be used as instruments in an investigation of the causal effect of iron status 

on risk of coronary artery disease (CAD). This principle has previously been adopted to 

explore the causal effect of iron status on atherosclerosis (9), and a similar approach has 

also been taken to show that red blood cell (RBC) traits are associated with risk of CHD (10). 

The instruments used in an MR study must influence the intermediate phenotype of interest 

(8, 11), which in this case is systemic iron status. Various correlated markers of iron status 

are available, including serum iron, transferrin saturation, ferritin and transferrin (1, 12-15). 

Genetic instruments for iron status that are used in an MR study should have a concordant 

association with each of these markers, and specifically SNPs that are deemed to increase 

systemic iron status should be associated with increased levels of serum iron, transferrin 

saturation and ferritin, and decreased levels of transferrin (9, 11, 16). Another potential 

limitation of the MR approach concerns pleiotropy, where genetic variants affect the outcome 

(CAD risk) through pathways that are independent of the intermediate phenotype of interest 
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(iron status), thus violating a fundamental assumption of MR to bias the causal effect 

estimates generated (8, 17). In this study, we select instruments for systemic iron status and 

perform an MR study investigating its causal effect on CAD risk. Furthermore, we explore 

the possibility that any pleiotropic effects of the instruments may be biasing the estimates 

generated.   

MATERIALS AND METHODS 

Materials and Methods are available in the online-only Data Supplement. The overall study 

design is demonstrated graphically in Figure 1. 

RESULTS 

The three instruments have F statistics for the four iron status markers ranging from 47 to 

2,127 (Table 1). Individual SNP-iron marker estimates are given in Table 1, while Table 2 

reports the SNP-CAD estimates from the meta-analysis of CARDIoGRAMplusC4D 1000G 

and CARDIoGRAMplusC4D Metabochip. 

Individual and pooled MR estimates for the effect of the four markers of iron status on risk of 

CAD are reported in Figure 2. The results, expressed as odds ratios (OR) for CAD per 

standard deviation unit increase in the iron status marker, demonstrate a protective effect on 

CAD risk for iron (OR 0.94, 95%CI 0.88 to 1.00, p=0.039), transferrin saturation (OR 0.95, 

95%CI 0.91 to 0.99, p=0.027) and (log-transformed) ferritin (OR 0.85, 95%CI 0.73 to 0.98, 

p=0.024). The effect estimate for transferrin (OR 1.08, 95%CI 1.01 to 1.16, p=0.034) is also 

in keeping with the other results to suggest that higher iron status is protective of CAD, as 

higher transferrin levels reflect lower iron status.  

Search of an online database of SNP-phenotype associations demonstrated that all three 

instruments are also associated with RBC traits (18, 19). Furthermore, the iron status raising 

allele at rs1800562 in the HFE gene is associated with lower low density lipoprotein levels 

and the iron status raising allele at rs1799945 in the HFE gene is associated with higher 

systolic and diastolic blood pressures (20, 21). 

DISCUSSION 

This work suggests a protective effect of higher iron status on the risk of CAD. The pooled 

MR estimates for serum iron, transferrin saturation, ferritin and transferrin all suggest that 

higher iron status lowers the risk of CAD. The objective of this study is to explore whether 

CAD risk is affected by iron status and instruments were selected to reflect this. The finding 

that all the considered iron status makers give similar causal estimates is consistent with the 
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effect of CAD risk being mediated by iron status rather than any individual marker. The small 

differences in estimates and confidence interval widths for the causal effects of the four 

markers might be explained by chance and possibly differential measurement error across 

markers, rather than indicating distinct causal pathways. In addition, the variation in 

magnitude of the MR estimate confidence intervals across the three SNPs for each iron 

status marker might also reflect the strengths of the SNP-iron status marker associations (as 

evaluated by the F statistics given in Table 1). In our current MR study, we demonstrate a 

causal effect of iron status on CAD risk using only the three SNPs associated with all four 

iron status markers at genome-wide significance. Given our interest in systemic iron status, 

we only include genetic variants that have shown genome-wide significant association with 

all four iron status markers in a pattern concordant with an effect on systemic iron status (i.e. 

increased levels of serum iron, transferrin saturation and ferritin, and decreased levels of 

transferrin) to minimise risk of including invalid instruments. For example, rs8177240 in the 

TF gene has genome-wide significant associations with serum iron and transferrin 

saturation, but in opposite directions (Supplementary Table I). As any effect on systemic iron 

status should have a concordant direction of effect on both serum iron and transferrin 

saturation, this genetic variant is unlikely to be a valid instrument. While our approach has 

the advantage of minimising risk of incorporating invalid instruments, it pays the price of 

sacrificing the additional power that might be afforded by considering as instruments all 

genetic variants associated with any iron status marker at genome-wide significance (22). 

A potential source of bias with the MR approach relates to the issue of pleiotropy (8, 17). 

While the availability of many instruments allows for implementation of statistical methods to 

detect and adjust for pleiotropy in sensitivity analyses, such techniques are not applicable 

when few instruments are available, such as in our study (23-27). Despite this, we have 

investigated the possibility of pleiotropy by searching for secondary phenotypes which have 

shown association with the three instruments. The association of the three iron status 

instruments with RBC traits may be expected given the well-established relationship 

between iron status and anaemia (12), but this would not bias the MR analysis if any effect 

of RBC traits on CAD risk was acting downstream of iron status, rather than independently of 

it (8, 17). The association of the iron status raising allele at rs1800562 (HFE gene) with lower 

low density lipoprotein (LDL) levels and the iron status raising allele at rs1799945 (HFE 

gene) with higher systolic and diastolic blood pressures are likely to be affecting CAD risk 

independently of iron status, and would therefore be expected to bias the MR estimates (20, 

21). Lower LDL levels and higher blood pressure are known to reduce and increase CAD 

risk respectively (20, 21). Consistent with the hypothesis of some bias attributable to 

pleiotropy, rs1800562 and rs1799945 give MR estimates for all markers that tend to 
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respectively over-estimate and under-estimate the effect of iron status on CAD risk as 

compared to rs855791 (TMPRSS6 gene), although the confidence intervals for the three 

SNPs largely overlap for all markers (Figure 2). Moreover, the pooled MR estimate across 

the three SNPs is comparable to that of rs855791 alone, which has no known pleiotropic 

associations. Thus, the overall conclusions of this work are unlikely to be severely affected 

by these pleiotropic effects. 

Early work attributed the observed association of heart disease with disorders of iron 

storage, older age in men and post-menopausal status in women to the effect of higher 

systemic iron status (2). However, consequent observational studies did not support this 

(28). A randomised controlled trial has demonstrated a protective effect of heavy metal 

chelation induced by disodium EDTA on heart disease, but it is unclear how generalizable 

this finding is, and the observed effect might be specific to patients that have suffered a 

recent myocardial infarction or attributable to effects independent of systemic iron status and 

overall body iron stores (5). By contrast, the conclusions of our MR study are in-keeping with 

a systematic review and meta-analysis of prospective observational studies investigating the 

association of body iron status and CHD risk (6). All except one of the 17 studies included in 

this meta-analysis adjusted for smoking and major cardiovascular risk factors such as blood 

pressure and lipid profile, with some studies also adjusting for social class and chronic 

disease (6). The risk ratio of CHD for individuals with levels of the iron status marker in the 

top third compared with individuals in the bottom third was 0.80 (95%CI 0.73 to 0.87) for 

iron, 0.82 (95%CI 0.75 to 0.89) for transferrin saturation, 1.03 (95%CI 0.87 to 1.23) for 

ferritin, and 0.99 (95%CI 0.86 to 1.13) for transferrin (6). The non-significant results for 

ferritin and transferrin might be attributable to confounding caused by inflammation, which 

would act to increase serum levels of ferritin and decrease those of transferrin (29), while 

increasing the risk of CHD (30), thus potentially biasing the ferritin-CHD and transferrin-CHD 

associations to mask a true protective effect of higher iron status on CHD. The authors 

concluded that while their overall results may suggest a protective effect of higher body iron 

stores on risk CHD, it is difficult to infer causality due to the possibility of residual 

confounding and reverse causality bias (6). For example, increased iron status has also 

been associated with risk of diabetes mellitus, which is an established risk factor for 

cardiovascular disease (3, 31). In our MR study, we have used genetic variants as 

instrumental variables for iron status to overcome these limitations of observational research 

and strengthen the evidence for a protective effect of iron status on CAD risk. 

Iron deficiency is a treatable condition that affects up to 2 billion people worldwide (1). The 

suggestion here that low iron status may have a causal effect on cardiovascular disease 

therefore has potentially significant clinical and public health implications. However, it is 
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important to interpret the findings of our MR study in context. While it is unlikely that 

pleiotropy is wholly responsible for the pattern of our results, we cannot completely exclude 

this. Compensatory developmental processes, referred to as canalization, can buffer the 

effects of genetic variation and may have impacted on our MR estimates, although this 

would be expected to bias results towards the null (32), We note that the Wald-type 

estimator has been shown to induce bias in the MR analysis of binary outcomes, although of 

small magnitude (e.g. < 10%) in typical MR analyses (33). Use of the same combined 

discovery and replication results from the GWAS meta-analysis to both identify the 

instruments and estimate their associations with iron status markers may also result in over-

estimation of the SNP-iron status associations (the Beavis effect or Winner’s Curse) (11, 34, 

35), in turn leading to underestimation of the true causal effect of iron status on CAD risk 

(bias towards the null), which in our two-sample MR analysis is estimated as the SNP-CAD 

association divided by the SNP-iron status association. Our use of instruments that have 

strong associations with all four markers of iron status should however minimise any effect of 

such bias (36). Finally, the conclusions of our work relate to patterns of iron status observed 

in the population-based studies contributing to the GIS consortium and therefore reflect 

effects in the general population. Further research is needed to investigate the causal effects 

of iron status on CAD risk in subjects with severe iron overload or deficiency. Similarly, our 

study does not offer insight into whether the estimates are equally applicable to both men 

and women. Despite these limitations, the results of this work show consistent and 

biologically plausible effects. Iron status may be affecting CAD risk via effects on RBCs (10, 

12). Iron deficiency is also known to impact cellular metabolism (37), and may increase CAD 

risk by this mechanism.  

In conclusion, this work is suggestive of a protective effect of higher iron status on risk of 

cardiovascular disease. This warrants further investigation, as these findings may highlight 

possible therapeutic targets and risk reduction strategies. 
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HIGHLIGHTS 

 Systemic iron status is a modifiable trait that has been implicated in cardiovascular 

disease. 

 Serum iron, transferrin saturation, ferritin and transferrin are all markers of systemic 

iron status. 

 By using genetic variants associated with these four markers as surrogates for 

systemic iron status, this study implements the Mendelian randomization approach to 

demonstrate a causal effect of systemic iron status on risk of coronary artery 

disease. 

 These findings may highlight a possible therapeutic target for the prevention and 

treatment of coronary artery disease.
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TABLES AND FIGURES 
 

Table 1. Results for the SNP-iron status associations (12). EA: effect allele; EAF: effect 

allele frequency, as reported by the Genetics of Iron Status consortium (12); R2:  percentage 

of the iron marker variation explained by the SNP (38); F: F statistic (39); GX: the per-allele 

effect on standard deviation units of the iron marker; GX SE: standard error of GX. 

 

Table 2. SNP-CAD associations obtained by meta-analysis of CARDIoGRAMplusC4D 

1000G (60,801 CAD cases and 123,504 controls) and CARDIoGRAMplusC4D Metabochip 

(63,746 CAD cases and 130,681 controls) using a summary data method that accounts for 

participant overlap between the two studies (34,997 cases and 49,512 controls) (40-42). EA: 

effect allele; GY: the per-allele effect on CAD, log(OR); GY SE: standard error of GY; p: p 

value. 

 
Figure 1. Graphical representation of the two-sample MR study design. Three SNPs that 

each have genome-wide significant associations with increased serum iron, transferrin 

saturation and ferritin, as well as decreased transferrin levels are used as instruments for 

systemic iron status. By using genetic variants associated with the four iron status markers 

as surrogates, the Mendelian randomization (MR) approach is used to estimate the causal 

effect of systemic iron status on risk of coronary artery disease (CAD). 

Figure 2. Forest plot of the SNP-specific and pooled MR estimates for the causal effect of 

each iron status marker on CAD risk (odds ratio, OR). The size of the black squares reflects 

the precision of the MR estimates and the horizontal lines indicate their 95% confidence 

intervals (95% CI). The pooled MR estimate is depicted by the centre of the diamond, with 

the corner edges on either side indicating the 95% CI. 
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Table 1 

  
 

SNP-iron status associations (n=48,972) 

  Iron (μmol/l) Transferrin saturation (%) Log10 Ferritin (μg/l) Transferrin (g/l) 

SNP EA EAF R2 F GX 
GX 

SE 
R2 F GX 

GX 

SE 
R2 F GX 

GX 

SE 
R2 F GX GX SE 

rs1800562 A 0.07 1.3 668 0.328 0.016 4.2 2127 0.577 0.016 0.5 256 0.204 0.016 2.9 1446 -0.479 0.016 

rs1799945 G 0.15 0.9 450 0.189 0.010 1.4 676 0.231 0.010 0.1 53 0.065 0.010 0.3 163 -0.114 0.010 

rs855791 G 0.55 1.6 806 0.181 0.007 1.8 889 0.190 0.008 0.1 73 0.055 0.007 0.1 47 -0.044 0.007 
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Table 2 

SNP EA GY GY SE p 

rs1800562 A -0.041 0.019 0.031 

rs1799945 G 0.006 0.012 0.585 

rs855791 G -0.014 0.008 0.097 
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Figure 1 
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Figure 2 
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Supplementary file 

MATERIALS AND METHODS 

 

GENETIC ASSOCIATIONS 

As markers of iron status, we consider serum iron (μmol/l), transferrin saturation (%), log10- 

transformed ferritin (μg/l) and transferrin (g/l) (1). The SNP-iron status association estimates 

are obtained from combined discovery and replication cohorts in a published genome-wide 

association study (GWAS) meta-analysis of 48,972 subjects of European descent performed 

by the Genetics of Iron Status (GIS) consortium, where adjustments were made for age, 

population stratification (ancestry principal components) and other study specific covariates 

(1). 

For the SNP-CAD association estimates, we use publicly available results from the 

CARDIoGRAMplusC4D 1000 Genomes-based GWAS (referred to here as 

CARDIoGRAMplusC4D 1000G) and CARDIoGRAMplusC4D Metabochip (2, 3). 

CARDIoGRAMplusC4D 1000G is a GWAS meta-analysis of 60,801 CAD cases and 123,504 

controls that adjusts for population stratification (genomic control method) (2). Participants 

are of European, east Asian, south Asian, Hispanic and African American ancestry (2). The 

diagnosis of CAD varies between studies; cases included subjects with documented acute 

coronary syndrome, coronary artery bypass grafting, percutaneous coronary 

revascularization, stenosis of greater than 50% in one or more of the coronary vessels, and 

cardiac angina (2). CARDIoGRAMplusC4D Metabochip is a meta-analysis of 63,746 CAD 

cases and 130,681 controls genotyped with either the Metabochip array or GWAS data 

imputed using HapMap (3). Participants are of European and south Asian descent (3). The 

study uses CAD definitions similar to CARDIoGRAMplusC4D 1000G and corrects for 

population stratification, age and sex (3). Results for both CARDIoGRAMplusC4D 1000G 

and CARDIoGRAMplusC4D Metabochip can be downloaded from 

www.CARDIoGRAMplusC4D.org (2, 3). We obtain SNP-CAD association estimates by 

meta-analysis of results from CARDIoGRAMplusC4D 1000G and CARDIoGRAMplusC4D 

Metabochip using a summary data method that accounts for participant overlap between the 

two studies (34,997 cases and 49,512 controls) (4). The approach ‘decouples’ the results 

from the two studies by transforming the covariance structure of the data such that  

metaanalysis methods assuming independence may consequently be applied (4). 
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INSTRUMENT SELECTION 

Increased systemic iron status is associated with increased levels of serum iron, transferrin 

saturation and ferritin, and decreased levels of transferrin (1, 5-8). Thus, these four 

correlated markers may be treated as surrogates of systemic iron status, the single 

intermediate phenotype of interest in our MR study. Genetic instruments for iron status 

should therefore be expected to have a concordant association with each of these four 

markers, and specifically SNPs that are deemed to increase systemic iron status should be 

associated with increased levels of serum iron, transferrin saturation and ferritin, and 

decreased levels of transferrin (9-11). The meta-analysis performed by the GIS consortium 

identified 12 genetic loci that differentially affect the four considered iron status markers 

(Supplementary Table 1) (1). Three loci (rs1800562 and rs1799945 in the HFE gene, and 

rs855791 in TMPRSS6) are associated with all four iron status markers at genome-wide 

significance (p < 5 x 10-8) in a pattern consistent with an effect on systemic iron status (i.e. 

increased levels of serum iron, transferrin saturation and ferritin, and decreased levels of 

transferrin) (Supplementary Table 1) (1, 11), and only these are considered as instruments 

for systemic iron status in our MR analysis. The rs1800562 and rs1799945 SNPs in the HFE 

gene are not in linkage disequilibrium (LD r2 < 0.01). 

The strength of each instrument is evaluated using its F statistic, and only SNPs with an F 

statistic greater than 10 are used, thus minimising any weak instrument bias (12, 13). 

 

MENDELIAN RANDOMIZATION ESTIMATES 

To derive MR estimates, a two-sample summary data approach is performed separately for 

each SNP using the Wald-type estimator, with standard error derived using the Delta method 

(14). Combined MR estimates are obtained by pooling MR estimates across SNPs using a 

fixed-effect inverse-variance weighted (IVW) meta-analysis. 

The overall study design is demonstrated graphically in Figure 1. 

 

PLEIOTROPY 

To explore the possibility that the instruments for iron status may be exerting effects on CAD 

risk through pleiotropic pathways that are independent of iron status and thus biasing the 

results of the MR analysis (15, 16), an online database of SNP-phenotype associations 
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(PhenoScanner, http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner) is used to 

search for secondary phenotypes associated with the three selected instruments at 

genomewide significance (p < 5 x 10-8) (17). 

All analyses are performed using the statistical programme R (version 3.3.1). 
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