380 research outputs found
Geodesic motions versus hydrodynamic flows in a gravitating perfect fluid: Dynamical equivalence and consequences
Stimulated by the methods applied for the observational determination of
masses in the central regions of the AGNs, we examine the conditions under
which, in the interior of a gravitating perfect fluid source, the geodesic
motions and the general relativistic hydrodynamic flows are dynamically
equivalent to each other. Dynamical equivalence rests on the functional
similarity between the corresponding (covariantly expressed) differential
equations of motion and is obtained by conformal transformations. In this case,
the spaces of the solutions of these two kinds of motion are isomorphic. In
other words, given a solution to the problem "hydrodynamic flow in a perfect
fluid", one can always construct a solution formally equivalent to the problem
"geodesic motion of a fluid element" and vice versa. Accordingly, we show that,
the observationally determined nuclear mass of the AGNs is being overestimated
with respect to the real, physical one. We evaluate the corresponding
mass-excess and show that it is not always negligible with respect to the mass
ofthe central dark object, while, under circumstances, can be even larger than
the rest-mass of the circumnuclear gas involved.Comment: LaTeX file, 22 page
Joint modeling of ChIP-seq data via a Markov random field model
Chromatin ImmunoPrecipitation-sequencing (ChIP-seq) experiments have now become routine in biology for the detection of protein-binding sites. In this paper, we present a Markov random field model for the joint analysis of multiple ChIP-seq experiments. The proposed model naturally accounts for spatial dependencies in the data, by assuming first-order Markov dependence and, for the large proportion of zero counts, by using zero-inflated mixture distributions. In contrast to all other available implementations, the model allows for the joint modeling of multiple experiments, by incorporating key aspects of the experimental design. In particular, the model uses the information about replicates and about the different antibodies used in the experiments. An extensive simulation study shows a lower false non-discovery rate for the proposed method, compared with existing methods, at the same false discovery rate. Finally, we present an analysis on real data for the detection of histone modifications of two chromatin modifiers from eight ChIP-seq experiments, including technical replicates with different IP efficiencies
West Nile Virus: Basic Principles, Replication Mechanism, Immune Response and Important Genetic Determinants of Virulence
Medical genetic
Neutron Rich Hypernuclei in Chiral Soliton Model
The binding energies of neutron rich strangeness hypernuclei are
estimated in the chiral soliton approach using the bound state rigid oscillator
version of the SU(3) quantization model. Additional binding of strange
hypernuclei in comparison with nonstrange neutron rich nuclei takes place at
not large values of atomic (baryon) numbers, . This effect
becomes stronger with increasing isospin of nuclides, and for "nuclear variant"
of the model with rescaled Skyrme constant . Total binding energies of
(Lambda)He-8 and recently discovered (Lambda)H-6 satisfactorily agree with
experimental data. Hypernuclei (Lambda)H-7, (Lambda)He-9 are predicted to be
bound stronger in comparison with their nonstrange analogues H-7, He-9;
hypernuclei (Lambda)Li-10, (Lambda)Li-11, (Lambda)Be-12, (Lambda)Be-13, etc.
are bound stronger in the nuclear variant of the model.Comment: 8 pages, 4 tables; amendments made, data on binding energy of
(Lambda)He-8 and references added; prepared for the conferences Quarks-2012
and HYP201
Hybrid Nanomaterials of Magnetic Iron Nanoparticles and Graphene Oxide as Matrices for the Immobilization of beta-Glucosidase:Synthesis, Characterization, and Biocatalytic Properties
Hybrid nanostructures of magnetic iron nanoparticles and graphene oxide were synthesized and used as nanosupports for the covalent immobilization of β-glucosidase. This study revealed that the immobilization efficiency depends on the structure and the surface chemistry of nanostructures employed. The hybrid nanostructure-based biocatalysts formed exhibited a two to four-fold higher thermostability as compared to the free enzyme, as well as an enhanced performance at higher temperatures (up to 70°C) and in a wider pH range. Moreover, these biocatalysts retained a significant part of their bioactivity (up to 40%) after 12 repeated reaction cycles
Women Scientists Who Made Nuclear Astrophysics
Female role models reduce the impact on women of stereotype threat, i.e., of being at risk of conforming to a negative stereotype about one's social, gender, or racial group [1,2]. This can lead women scientists to underperform or to leave their scientific career because of negative stereotypes such as, not being as talented or as interested in science as men. Sadly, history rarely provides role models for women scientists; instead, it often renders these women invisible [3]. In response to this situation, we present a selection of twelve outstanding women who helped to develop nuclear astrophysics
- …