87 research outputs found

    A Simple Synchro – Modal Decision Support Tool for the Piraeus Container Terminal

    Get PDF
    AbstractThe concept of Synchro modality is effectively an evolution of a multimodal supply chain. It integrates different transport modes and gives shippers and logistics service providers the freedom to deploy different modes of transportation in the same chain and in a flexible way so as to gain the desired outcome according to their priorities in a certain trip. Time, costs and emissions are certainly the three most relevant parameters when talking about a multimodal transportation chain. In most cases the logistics provider has set priorities to conform with, and obviously above mentioned constrains influence each other in an adverse way. With the development of ICT technologies and systems installed on board and on shore and with a simple decision support system fed with input from tracking and tracing systems or traffic monitoring systems, one can easily and flexibly plan his transportation job and maintain his set priority while in parallel keeping the remaining two parameters in control. Down times for example could be eliminated and efficiency gains could be achieved with decreased environmental footprint.The Port of Piraeus is the largest Greek seaport and one of the largest ports in the Mediterranean Sea basin. It exhibits an impressive container traffic growth rate over the last 4 years triggered by its partial privatization and a recently completed hinterland connection to the rail network, which associated the port with the South-Eastern European corridor e.g. the route Far Eastern ports–Piraeus–Prague.The current paper will present an easy to use simple tool to continuously assess even during the transportation event all the alternative modes for a given destination in terms of time cost and emissions. An analytical fully parameterized model will be the basis for this tool which will be run for the chain Shanghai–Piraeus–Prague. The overall scenario is as follows: A container ship is arriving from China to the Piraeus Container Terminal. One of its containers is destined to an inland Enterprise in Prague. The most common way for transportation to Prague is rail, but also truck could be an alternative solution and of course a combination of a Short Sea Shipping part to Thessaloniki and then truck or train to Prague. Emphasis in the calculations will be given to emissions for all the modes and relations will be shown with time and cost.The tool developed is based on the case study above, being however open architecture software it can be expanded and applied to other ports and routes. The final outcome will be an easy and user friendly tool with the possibility to alter different input parameters and receive quickly a useful decision support system for the shipper or the logistics providers. Finally, there are two loops foreseen for the runs of the program. The required input parameters at each stage are either directly fed to the program if available (e.g vessels ETA and position through GPS, VTS, ETC) or calculated if this is not the case

    H<sub>2</sub>S removal by copper enriched porous carbon cuboids

    Get PDF
    Hydrogen sulfide (H2S) removal by adsorption from gas streams is crucial to prevent the environmental and industrial damage it causes. Amongst the nanostructures considered excellent candidates as sorbents, porous carbon has been studied extensively over the last years. In the present work we present a synthetic procedure for three high potential sorbents based on carbon cuboids, namely a low-surface-area copper-rich structure, a highly porous aggregate without metal addition, and lastly the same porous carbon decorated with copper. The properties and performance as catalysts of these three sorbents were evaluated by powder X-ray diffraction, X-ray photoelectron spectroscopy, thermal analysis, scanning electron microscopy with energy dispersive X-ray analysis, surface area determination through N2 adsorption and desorption, as well as by H2S adsorption measurements

    Game-Theoretic Optimal Power-Link Quality Topology Control in Wireless Sensor Networks

    Get PDF
    One of the most significant problems in Wireless Sensor Network (WSN) deployment is the generation of topologies that maximize transmission reliability and guarantee network connectivity while also maximizing the network’s lifetime. Transmission power settings have a large impact on the aforementioned factors. Increasing transmission power to provide coverage is the intuitive solution yet with it may come with lower packet reception and shorter network lifetime. However, decreasing the transmission power may result in the network being disconnected. To balance these trade-offs we propose a discrete strategy game-theoretic solution, which we call TopGame that aims to maximize the reliability between nodes while using the most appropriate level of transmission power that guarantees connectivity. In this paper, we provide the conditions for the convergence of our algorithm to a pure Nash equilibrium as well as experimental results. Here we show, using the Indriya WSN testbed, that TopGame is more energy-efficient and approaches a similar packet reception ratio with the current closest state of the art protocol ART. Finally, we provide a methodology for further optimization of our work using an indicator function to distinguish between satisfactory and poor links

    Layer-by-Layer Assembly of Clay-Carbon Nanotube Hybrid Superstructures

    Get PDF
    Much of the research effort concerning layered materials is directed toward their use as building blocks for the development of hybrid nanostructures with well-defined dimensions and behavior. Here, we report the fabrication through layer-by-layer deposition and intercalation chemistry of a new type of clay-based hybrid film, where functionalized carbon nanotubes are sandwiched between nanometer-sized smectite clay platelets. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized in a single step with phenol groups, via 1,3-dipolar cycloaddition, to allow for stable dispersion in polar solvents. For the production of hybrid thin films, a bottom-up approach combining self-assembly with Langmuir-Schaefer deposition was applied. Smectite clay nanoplatelets act as a structure-directing interface and reaction media for grafting functionalized carbon nanotubes in a bidimensional array, allowing for a controllable layer-by-layer growth at a nanoscale. Hybrid clay/SWCNT multilayer films deposited on various substrates were characterized by X-ray reflectivity, Raman, and X-ray photoelectron spectroscopies, as well as atomic force microscopy

    Smectite clay pillared with copper complexed polyhedral oligosilsesquioxane for adsorption of chloridazon and its metabolites

    Get PDF
    Chloridazon has been a widely used herbicide during the past decades, especially in sugar-beet cultivation. UV-induced degradation of chloridazon leads to the formation of desphenyl counterparts, i.e. desphenyl-chloridazon and methyl-desphenyl-chloridazon. Even if accumulation of these residues in natural waters is far from alarming, a low-cost effective and environmentally friendly adsorbent, capable of binding chloridazon and its degradation products is desirable to reduce their concentration in water even further below legal limits. Here we show that pillared smectite clay, prepared by cation exchange of sodium with copper complexed, cage-shaped polyhedral oligomeric silsesquioxane (Cu2+@POSS) could be a promising candidate for this purpose. X-ray diffraction and high resolution transmission electron microscopy evidenced a homogeneous layered structure where the interlayer spacing is enlarged by 7.1 ± 0.2 Å (the diameter of Cu2+@POSS) with respect to the pristine clay. Exposure of this pillared smectite clay to chloridazon and its metabolites in water showed that Cu2+@POSS intercalation significantly improved its adsorption capacity. In addition, after several thermal regeneration cycles, Cu2+@POSS_SWy-2 still exhibited excellent adsorption properties. These findings demonstrate that smectite clay pillared with copper complexed polyhedral oligosilsesquioxane is a promising environmentally friendly and relatively low cost material for herbicide waste remediation

    Highly Efficient Remediation of Chloridazon and Its Metabolites:The Case of Graphene Oxide Nanoplatelets

    Get PDF
    The contamination of aqueous environments by aromatic pollutants has become a global issue. Chloridazon, a herbicide considered as harmless to the ecosystem, has been widely used in recent decades and has accumulated, together with its degradation products desphenyl-chloridazon and methyl-desphenyl-chloridazon, to a non-negligible level in surface water and groundwater. To respond to the consequent necessity for remediation, in this work, we study the adsorption of chloridazon and its metabolites by graphene oxide and elucidate the underlying mechanism by X-ray photoelectron spectroscopy. We find a high adsorption capacity of 67 g kg-1for chloridazon and establish that bonding of chloridazon to graphene oxide is mainly due to hydrophobic interaction and hydrogen bonding. These findings demonstrate the potential of graphene-based materials for the remediation of chloridazon and its metabolites from aqueous environments

    Hybrid Nanomaterials of Magnetic Iron Nanoparticles and Graphene Oxide as Matrices for the Immobilization of beta-Glucosidase:Synthesis, Characterization, and Biocatalytic Properties

    Get PDF
    Hybrid nanostructures of magnetic iron nanoparticles and graphene oxide were synthesized and used as nanosupports for the covalent immobilization of β-glucosidase. This study revealed that the immobilization efficiency depends on the structure and the surface chemistry of nanostructures employed. The hybrid nanostructure-based biocatalysts formed exhibited a two to four-fold higher thermostability as compared to the free enzyme, as well as an enhanced performance at higher temperatures (up to 70°C) and in a wider pH range. Moreover, these biocatalysts retained a significant part of their bioactivity (up to 40%) after 12 repeated reaction cycles

    Development of a Multi-Enzymatic Biocatalytic System through Immobilization on High Quality Few-Layer bio-Graphene

    Get PDF
    In this work, we report the green production of few-layer bio-Graphene (bG) through liquid exfoliation of graphite in the presence of bovine serum albumin. Microscopic characterization evaluated the quality of the produced nanomaterial, showing the presence of 3–4-layer graphene. Moreover, spectroscopic techniques also confirmed the quality of the resulted bG, as well as the presence of bovine serum albumin on the graphene sheets. Next, for the first time, bG was used as support for the simultaneous covalent co-immobilization of three enzymes, namely β-glucosidase, glucose oxidase, and horseradish peroxidase. The three enzymes were efficiently co-immobilized on bG, demonstrating high immobilization yields and activity recoveries (up to 98.5 and 90%, respectively). Co-immobilization on bG led to an increase of apparent K(M) values and a decrease of apparent V(max) values, while the stability of the nanobiocatalysts prevailed compared to the free forms of the enzymes. Co-immobilized enzymes exhibited high reusability, preserving a significant part of their activity (up to 72%) after four successive catalytic cycles at 30 °C. Finally, the tri-enzymatic nanobiocatalytic system was applied in three-step cascade reactions, involving, as the first step, the hydrolysis of p-Nitrophenyl-β-D-Glucopyranoside and cellobiose

    Management of venous thromboembolism in pregnancy

    Full text link
    Venous thromboembolism (VTE) in pregnancy, consisting of deep venous thrombosis (DVT) and pulmonary embolism (PE), is a major factor of maternal mortality. Several patient-specific risk factors along with the physiologic changes of pregnancy promote a state of hypercoagulability in pregnant women. Detailed assessment of all pregnant women can establish a risk profile that would guide clinical decisions, and balance potential therapeutic benefits with side effects. Differentiating between physiologic changes of pregnancy and symptoms of VTE can be challenging and warrants meticulous clinical evaluation. Timely and accurate diagnosis of VTE with proper imaging is essential for its management, and systemic anticoagulation remains the cornerstone of VTE prevention and therapy. Furthermore, advanced invasive treatment options such as inferior vena cava filters and thrombectomy can be considered for complex cases. Importantly, the risk of systemic anticoagulation should be balanced against the risk of VTE-associated morbidity and mortality for mother and fetus, and an informed decision should be made. In this review, we present an up-to-date overview of VTE management in pregnancy and the postpartum period. Keywords: Anticoagulants; Deep venous thrombosis; Pregnancy; Pulmonary embolism; Venous thromboembolism
    • …
    corecore