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ABSTRACT: Much of the research effort concerning layered
materials is directed toward their use as building blocks for the
development of hybrid nanostructures with well-defined
dimensions and behavior. Here, we report the fabrication
through layer-by-layer deposition and intercalation chemistry
of a new type of clay-based hybrid film, where functionalized
carbon nanotubes are sandwiched between nanometer-sized
smectite clay platelets. Single-walled carbon nanotubes
(SWCNTs) were covalently functionalized in a single step
with phenol groups, via 1,3-dipolar cycloaddition, to allow for
stable dispersion in polar solvents. For the production of
hybrid thin films, a bottom-up approach combining self-
assembly with Langmuir—Schaefer deposition was applied.

Smectite clay nanoplatelets act as a structure-directing interface and reaction media for grafting functionalized carbon nanotubes
in a bidimensional array, allowing for a controllable layer-by-layer growth at a nanoscale. Hybrid clay/SWCNT multilayer films
deposited on various substrates were characterized by X-ray reflectivity, Raman, and X-ray photoelectron spectroscopies, as well

as atomic force microscopy.

B INTRODUCTION

Over the last decades, the industrial and scientific interest in
layered materials has been mainly driven by their physical and
chemical properties, resulting from the reduced dimensionality
of the individual layers. Their structural characteristics and in
particular their high surface area, combined with their unique
(opto)electronic properties, render layered materials ideal for a
wide range of applications in electronics,’ nanosensing,” gas
separations,3 and energy stor_age,4 as well as in biomedical
technology and drug delivery.”

Layered aluminosilicate minerals (smectite clays) consisting
of platelets, where an aluminum oxide octahedral sheet is
sandwiched between two silicon oxide tetrahedral sheets,
belong to the phyllosilicate family and exhibit a unique
combination of properties including the ability to swell when
put in contact with water, to adsorb molecules and organic/
inorganic cationic moieties from solutions and to exchange
cations located between the platelets.”® The cation storage
ability renders clay minerals an excellent template for
embedding molecules and nanomaterials and forms the basis
for the development of hybrids and nanocomposites with well-
defined dimensions and behavior.”

On the other hand, carbon nanotubes (CNTs) are unique in
their aspect ratio, mechanical strength, and electrical and
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18100

thermal conductivities; therefore, they are an ideal nanoma-
terial for light-emitting diodes, smart windows, solar cells,
nanofillers, self-healing thermoset/CNT nanocomposites,
etc.”™"" The integration of CNTs within two-dimensional
(2D) materials (such as graphene and MoS,) generates hybrid
superstructures with improved mechanical stability and
enhanced thermal and electrical properties due to the
synergistic effects of 2D and one-dimensional materials."”~"
Thus, the synthesis of hybrid nanomaterials, combining the
properties of carbon nanotubes and layered materials with high
surface area, has great potential for applications in the fields of
catallysis,ls’17 sensing,lz’l(”18 optoelectronics,"'? and biomedi-
cine.'**°

Studies reported so far on the development of clay—CNT
hybrid superstructures concern mainly their use as additives to
increase the mechanical properties of polypropylene”’ and
epoxy resin,’>>® as well as in styrene—butadiene rubber
nanocomposites”* and as additives in Nafion polymer matrixes
for electrolyte nanocomposite membranes.”” In addition, clay—
CNT hybrids reduce significantly the electrical percolation
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Scheme 1. Schematic Representation of the Synthetic Procedure Followed for the Development of the Hybrid DODA—Clay/

SWCNTs-f-OH Multilayer Film
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Figure 1. (Left) Schematic representation of SWCNT functionalization via 1,3-dipolar cycloaddition and photographs of suspensions of the two
types of SWCNTs in DMF. (Top) FT-IR (center) and Raman (right) spectra of pristine SWCNTs (a) and SWCNTs-f-OH (b). (Bottom)
Differential thermal analysis/thermogravimetric (DTA/TG) curves of pristine SWCNTs (a) and SWCNTs-f-OH (b).

threshold”® and improve the electrical conductivity when
incorporated in polypropylene and epoxy matrixes.”” More-
over, due to the synergistic effect of clay nanoplatelets and
carbon nanotubes, these hybrid structures have been proposed
as flame retardants in unsaturated polyester resins and
poly(methyl methacrylate)**** as well as adsorbents for the
removal of bacterial contaminants from different water
supplies.”

In this work, we propose a simple and low-cost method for
the development of hybrid clay multilayers accommodating
functionalized single-walled carbon nanotubes (SWCNTs)

18101

based on the combination of Langmuir—Schaefer (LS)
deposition and self-assembly.”’ ~** SWCNTs, functionalized
with phenol groups by 1,3-dipolar cycloaddition (SWCNTs-f-
OH), were sandwiched between natural nanometer-sized clay
platelets through layer-by-layer deposition to yield novel
pillared structures with structural control at the molecular
scale. An amino surfactant (dimethyldioctadecylammonium
(DODA) bromide, [CH;(CH,),,],(CH;),N*Br~) was in-
jected on top of an aqueous suspension of Na-montmorillonite
(Kunipia-F) in the Langmuir—Blodgett trough to induce the
formation of a hybridized Langmuir film at the air-suspension

DOI: 10.1021/acsomega.9b01970
ACS Omega 2019, 4, 18100—18107


http://dx.doi.org/10.1021/acsomega.9b01970

ACS Omega

70 (2) 5mN m? T'QP{}}\.I m2
—=— Pure water

60 4 e 7 ppm
— > 15ppm
IS 50 =— 20 ppm
= —— 60 ppm
£ —— 100 ppm
o 40 4
> 200 ppm 15mN m* 20 mN-m:t
3 >
L 304
o
[0
(&}
8 20
>S5
%)

10

o T ;,

0 100 1.01 nm
Mean Molecular Area (A?) . v

Figure 2. (Left) II-A isotherms of DODA Langmuir films on pure water and on Kunipia aqueous suspensions. (Right) Atomic force microscopy
(AFM) height images and cross-sectional analysis of DODA—clay monolayers deposited with the LS technique onto Si wafers at surface pressures
of (a) S mN m™, (b) 10 mN m™, (c) 15 mN m™, and (d) 20 mN m™" during the compression process.

interface. After the transfer of the compressed Langmuir film
by horizontal dipping (Langmuir—Schaefer method), the
substrate was immersed in a dispersion of SWCNTs-f-OH to
prompt self-assembly. Hybrid multilayer films hosting
SWCNTs within the interlayer space between clay platelets
were fabricated by repeating this cycle for numerous times
(Scheme 1) with the help of a robotic arm. These novel clay-
based hybrid films could be excellent candidate nanomaterials
for potential application as electrical conductivity im-
provers,”**> mechanical properties reformers,”"** nanoaddi-
tives in direct methanol fuel cells, or even as contaminant
removal nanomaterial.”®> Moreover, when dispersed in a
polymer matrix, clay—CNT additives create thermoprotection
layers for electronics and enhance the proton conductivity.*®
Carbon nanotubes attached to smectite layers are also
particularly attractive for polymer reinforcement®”*® and the
high surface area of these hybrid nanomaterials can be
exploited for the removal of bacterial contaminants from
different water supplies.”

B RESULTS AND DISCUSSION

Structural and Morphological Characterization of
SWCNTs-f-OH. The Fourier transform infrared (FT-IR)
spectra of pristine SWCNTSs and functionalized SWCNTs-f-
OH are shown in Figure 1 (top center panel). In contrast to
pristine SWCNTSs, which are infrared inactive, additional
vibrations are observed in the SWCNTs-f-OH spectrum. In
more detail, C—H stretching bands appear at 804 cm™ and
between 3000 and 2800 cm™!; C=C stretching bands are
observed around 1600—1380 cm™!, while the bands located at
1260 and 3320 cm™! are attributed to the C—O and O—H
stretching modes. Together, these vibrational fingerprints
testify to the successful functionalization of SWCNTs with
phenols. As a result of the covalent sidewall functionaliza-
tion”***" with hydroxyl groups, the dispersibility of SWCNT's-
f-OH in polar solvents is higher compared to that of pristine
SWCNTs as observed in the photographs shown in Figure 1
(left panels).”

Raman spectra of SWCNTs-f-OH and pristine SWCNTs are
shown in Figure 1 (top right panel). For both materials, the
defect-induced D band appears at 1335 cm™" and the G band
splits into two modes, wg at 1545 cm™ and w¢ at 1590 cm™,
resulting from the characteristic confinement and curvature of
carbon nanotubes.**™*° The Iy/I; ratio of pristine SWCNTSs
and SWCNTs-f-OH was calculated to amount to 0.07 and
0.10, respectively. The slightly higher value for SWCNTs-f-OH
agrees with the change in hybridization resulting from the
covalent attachment of phenol moieties to the sidewall of
nanotubes; however, the I/I; of SWCNTs-f-OH is very low
as expected for a high-quality graphitic structure.”*'

The differential thermal and thermogravimetric analyses of
SWCNTs before and after functionalization are shown in
Figure 1 (bottom center and bottom right panels). In the case
of pristine nanotubes, one sharp exothermic peak at 480 °C is
observed, followed by the complete decomposition of the
graphitic lattice, while for SWCNTSs-f-OH, two main
exothermic peaks are seen. The first peak at 365 °C is
attributed to the removal of aliphatic groups and the
corresponding weight loss is estimated to be ~33 wt %,
while the second peak at 490 °C corresponds to the thermal
decomposition of the graphitic network with a mass loss of
~51 wt %. These results provide further evidence for the
successful covalent functionalization of the SWCNTs.

Structural Control and Characterization of Hybrid
DODA-Clay/SWCNTs-f-OH Monolayers. [[-A isotherms
of DODA monolayers on pure water and on the Kunipia
suspension were recorded during the compression of the
Langmuir films and are shown in Figure 2. The curves show
the phase transitions of the DODA layer and the DODA—clay
hybrid layer from 2D gas to condensed liquid and then to 2D
solid during the compression process.”’ "> In the absence of
clay, the []—A isotherm smoothly increases with a lift off area
of 164 A% When using aqueous clay suspensions as the
subphase, the lift-off area of the isotherms increases to higher
values, testifying to the adsorption of DODA cations on the
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clay nanoplatelets and thus to the hybridization of the clay
platelets with the DODA molecules.””>"

The precise control over the packing density of hybrid
Langmuir films (DODA—clay) was verified by AFM as shown
in Figure 2 (right). Representative AFM images of DODA—
clay monolayers deposited at surface pressures of 5, 10, 15, and
20 mN m™" onto Si wafers by the LS technique revealed that
the surface coverage scales with the surface pressure. More
specifically, the topographic images of DODA—clay mono-
layers deposited at the lowest surface pressure (Figure 2a)
reveal the uniform distribution of isolated clay sheets. When
the Langmuir film was compressed to 10 mN m™" (Figure 2b)
for deposition, the clay platelets start to contact each other but
with still rather large voids between them, and deposition at
even higher surface pressures of 15 mN m™ (Figure 2c) and
20 mN m™" (Figure 2d) leads to a denser and more compact
packing of the clay sheets. The average thickness of all
deposited monolayers of DODA—clay is 1—2 nm as derived
from topographical height profile (section analysis) corre-
sponding to the size of single clay layers.”

Representative AFM images of the transferred hybrid
DODA—clay/SWCNTSs-f-OH monolayers are shown in Figure
3, together with the topographic image of SWCNT-f-OH

Section Analysis

3.3nm
oM M fl""”‘”i S A
3.1 nm
]
B e ’v““‘/\ e A“’““\ﬁ/ v~ P ,\,”,JY\LM.“W-‘WVW.»A

Figure 3. AFM height images (top) and cross-sectional analysis
(bottom) of the DODA—clay/SWCNTSs-f-OH hybrid monolayer and
functionalized SWCNT-f-OH.

deposited by drop-casting from a DMF dispersion. The
functionalized SWCNT-f-OH has a diameter of 3 nm, as
revealed from the cross-sectional analysis (bottom right panel
of Figure 3), suggesting that the addition of phenol groups in
the sidewalls of nanotubes was successful and provided well-
dispersed and isolated SWCNTSs avoiding aggregation due to
the covalent addition of —OH groups. On the other hand, the
AFM images presented in the top panels of Figure 3 (top)
demonstrate that clay nanoplatelets decorated with SWCNTs
on the top are successfully transferred to form a layer of
(mostly) single platelets with well-defined edges that are
almost contacting each other and with small voids between
them. The average diameter of the attached SWCNTSs on the
clay platelets is 3 nm as calculated from the cross-sectional
analysis, in agreement with the size of the SWCNTs-f-OH
prepared by 1,3-dipolar cycloaddition.

The SWCNT-{-OH attached on the DODA—clay layers are
shorter than the pristine SWCNTSs because during ultra-
sonication treatment, the acoustic waves induce a carbon
nanotube scission.’* Moreover, during the Langmuir—Schaefer
procedure, the lower-molecular-weight carbon nanotubes float
on the surface when the substrate is immersed in the aqueous
dispersion of SWCNTs-f-OH to prompt self-assembly, in
addition to the heavier (and longer in size) ones that sink and
do not interact with the substrate.

Characterization of Clay/CNTs Hybrid Thin Films. X-
ray reflectivity (XRR) patterns collected from 40 layers of
DODA—clay—DODA and DODA—clay/SWCNTs-{-OH de-
posited at a surface pressure of 20 mN m™! are presented in
Figure 4. The reflectivity curve for DODA—clay—-DODA
clearly exhibits a prominent (001) Bragg peak at 2.3° (£0.1°),
as well as the (002), (003), (004), and (005) Bragg peaks.
These features prove that the DODA molecules are grafted on
both sides of Kunipia nanoplatelets after the LS procedure,
revealing a very well-ordered lamellar structure with a d(gg)-
spacing of 38.4 A as calculated from the Bragg law and in
agreement with our previous results.”” The XRR of DODA—
clay/SWCNTSs-f-OH hybrid multilayer on the other hand
displays the 001 (n = 1), 002 (n = 2), and 003 (n = 3)
diffractions at lower 26 values, demonstrating that the
interlayer distance of the clay nanoplatelets increased due to
the incorporation of SWCNTs-f-OH. In more detail, the
DODA—clay/SWCNTSs-f-OH hybrid multilayer shows a 001
diffraction peak at 260 = 1.9° (£0.1°), resulting in a dyy,-spacing
of 46.5 A. This value corresponds to an interlayer space of A =
46.5 — 9.6 = 36.9 A, confirming the presence of SWCNTs-f-
OH between the clay platelets. In this case, the Bragg peaks are
much broader as a result of the disorder in the hybrid thin film
due to the insertion of the nanotubes in the DODA—clay
interlayers.

The Raman spectrum of the DODA—clay/SWCNTs-{-OH
hybrid multilayer deposited on a Si wafer (40 layers) is shown
in Figure 4 (right panel), revealing the characteristic peaks of
SWCNTs, namely, the defect-included D band, appear at 1335
cm™' and the two degenerate modes of G band, wg and ¢, at
1544 and 1590 cm™’, respectively. The small increase of the
Ip/I; ratio (0.22) in the DODA—clay/SWCNTs-f-OH film
compared to that of the SWCNTs-f-OH (Ip/I; = 0.10) is
attributed to the shorter length of SWCNTSs-f-OH that is
deposited between the clay nanoplatelets,””* as was also
observed from the AFM study.

The X-ray photoelectron spectroscopy (XPS) analysis is
shown in Figure S; the survey spectrum (top panel) bears the
fingerprint of all the characteristic elements expected for the
hybrid film. From the detailed spectra, we deduce the following
elemental composition: carbon 58.5%, oxygen 29.0%, silicon
11.0%, and nitrogen 1.5%.

The C 1s core level XPS spectrum of DODA—clay/
SWCNTs-f-OH is displayed in Figure S (central panel) and
consists of five components, two peaks at a binding energies of
284.0 and 285.2 eV, which were attributed to the sp> and sp®
hybrid forms of carbon from the SWCNTs as well from the
C—C organic chains of DODA molecules representing both of
them 76.7% of the whole carbon amount. A fitted peak at
286.2 eV is due to the functionalization of SWCNTs-f-OH,
with hydroxyl groups filling 17% of the carbon spectra and
attesting the successful attachment of nanotubes with hydroxyl
moieties. A very weak photoelectron peak (2.3%) at 288.2 eV
may be due to some C—O—C or —COOH groups derived
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Figure 4. (Left) XRR patterns of DODA—clay—DODA and DODA—clay/SWCNTs-f-OH hybrid multilayers (40 layers). (Right) Raman spectrum

of DODA—clay/SWCNTs-f-OH hybrid multilayer (40 layers).

from the impurities absorbed on the nanotubes. Finally, a weak
peak at very low binding energies may arise from some type of
C—Si bond from the silica substrate or montmorillonite
Kunipia impurities.

The N 1s core level region in the photoelectron spectrum
(Figure S, bottom panel) confirms the presence of function-
alized SWCNTs between the Kunipia nanosheets’ (in
agreement with XRR results) because the pyrrolidine rings
on the functionalized SWCNTs give rise to this spectrum. In
fact, the peak at 402.1 eV, accounting for 63.6% of the total N
1s spectral intensity, originates from protonated nitrogen of the
pyrrolidine amines of SWCNTs-f-OH, and the nonprotonated
pyrrolidine amines of SWCNTs-f-OH are responsible for the
contribution at 399.5 eV.

B CONCLUSIONS

Hybrid thin films of SWCNTs, functionalized via 1,3-
cycloaddition, sandwiched between clay nanoplatelets, were
successfully prepared by combining the Langmuir—Schaefer
deposition with self-assembly. The efficiency of this approach
in terms of coverage and single-layer-level control of the
assembly was confirmed by the [[—A isotherms and AFM
results. The incorporation of SWCNTs-f-OH in the multilayer
structure was confirmed by X-ray photoelectron and Raman
spectroscopies. In addition, the XRR measurements revealed
that the hybrid multilayer films present a well-ordered lamellar
structure with an interlayer space of 36.9 A. These novel clay
pillared with SWCNT's constitutes an ideal synthetic approach
for hybrids needed in applications where a high surface area
has to be combined with specific functionalities in a well-
defined structure, such as materials for energy storage, sensing,
catalysis, and nanomedicine. The fabrication of hybrid thin
films, combining the properties of 2D materials with carbon
nanotubes is a great promise for fabricating novel pillared
structures with modified, adjusted, or improved properties.

B EXPERIMENTAL SECTION

Materials. A synthetic sodium-saturated montmorillonite
Kunipia-F, with a chemical formula Nagg4,[Al;,Fe-
(I11)0 20M80.61 Ti0.01](Si7.90Aly.10) O20(OH), and cation-ex-
change capacity of ~119 mequiv g~', was purchased from
Kunimine Industries Co. (Japan). Short-length single-walled
carbon nanotubes (SWCNTs, >90%) were purchased from

18104

mkNANO (Canada). Dimethyldioctadecylammonium bro-
mide (DODA, >98%), N,N-dimethylformamide (DMF,
>99%), 3,4-dihydroxibenzaldehyde (>97%), acetone, meth-
anol, and ethanol were purchased from Sigma-Aldrich. N-
Methyl-glycine (>99%) was purchased from Fluka. Ultrapure
deionized water (18.2 MQ) produced by a Millipore Simplicity
system was used throughout. The Si wafers (P/Bor, single side
polished, purchased from Si-Mat) were cleaned prior to use by
15 min of ultrasonication in water, acetone, and ethanol. All
reagents were of analytical grade and used without further
purification.

SWCNTs Functionalization. SWCNTs were function-
alized with phenol groups via 1,3-dipolar cycloaddition in a
single step.”>™>" More specifically, 25 mg of SWCNTs was
suspended in 50 mL of DMF by ultrasonication for 3 min. 250
mg of 3,4-dihydroxibenzaldehyde and 300 mg of N-methyl-
glycine were added in the suspension and the mixture was
refluxed at 155 °C for 7 days. After the reaction was
completed, the functionalized SWCNTs with phenol groups
were separated from the byproducts by vacuum filtration using
poly(tetrafluoroethylene) filter (from Sigma-Aldrich with a
pore size of 0.2 ym and diameter of 47 mm), washed several
times with DMF and ethanol, and finally air-dried.

Preparation of Hybrid Clay/CNTs Multilayers. A KSV
2000 Nima Technology Langmuir—Blodgett device was used
for the preparation and deposition of clay films at a
temperature of 21 + 0.5 °C. Films were deposited on Si
wafers, as depicted in Scheme 1. A 20 ppm clay (Kunipia-F)
suspension in ultrapure water (18.2 MQ Millipore Q-grade)
was used as the subphase. To achieve the hybridization of the
clay platelets, 100 uL of DODA—solvent mixture (0.2 mg
mL™) was spread onto the water—clay suspension with the
help of a microsyringe. After a waiting time of 20 min to allow
the evaporation of solvent, the hybrid DODA—clay Langmuir
film was compressed at a rate of S mm min~" until the chosen
stabilization pressure of 20 mN m™" was reached. This pressure
was maintained throughout the deposition process. Clay
monolayers were transferred onto the hydrophobic substrates
by horizontal dipping (Langmuir—Schaefer deposition), with
downward and lifting speeds of 10 and 5 mm min~’,
respectively. In the final step, the one-side organomodified
clay films were lowered in SWCNTs-f-OH (0.2 mg mL™")
dispersion to induce self-assembly.”' ~** Hybrid multilayer thin
films were prepared by repeating this procedure 40 times. After

DOI: 10.1021/acsomega.9b01970
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OH hybrid multilayer (40 layers).

each deposition step, the substrates were rinsed several times
by dipping into ultrapure water and dried with nitrogen flow to
avoid contaminating the Langmuir film in Langmuir—Blodgett
trough and/or the SWCNTs-f-OH dispersion. For comparison,
an organoclay hybrid multilayer (40 layers) was also
fabricated”” under the same experimental conditions, replacing
the SWCNTs-f-OH dispersion in the self-assembly step with
DODA surfactant solution in methanol (0.2 mg mL™')
(sample denoted as DODA—clay—DODA).
Characterization Techniques. FTIR spectra in the range
400—4000 cm™' were measured with a PerkinElmer Spectrum
GX infrared spectrometer equipped with a deuterated

triglycine sulphate detector. Each spectrum was the average
of 64 scans, collected with 2 cm™ resolution. Samples were in
the form of KBr pellets containing ca. 2 wt % sample. Raman
spectra of SWCNTs, SWCNTs-f-OH, and DODA—clay/
SWCNTs-f-OH hybrid thin films deposited on the Si wafer
were collected with a micro-Raman system RM 1000
RENISHAW using a laser excitation line at 532 nm (laser
diode). A 0.5—1 mW laser power was focused on a 1 ym spot
to avoid photodecomposition of the hybrid films. Thermal and
thermogravimetric analyses (DTA/TGA) were performed
using a PerkinElmer Pyris Diamond TG/DTA. Samples of
approximately S mg were heated in air from 25 to 850 °C at a
rate of 5 °C min™~". X-ray reflectivity patterns were collected on
a D8 Advance Bruker Diffractometer by using Cu Kar (4 = 1.54
A) radiation, a molybdenum (Mo) monochromator, and a
parallel beam stemming from a GoObel Mirror. They were
recorded in the 26 range from 2 to 12° with the stepping
count of 0.02° and the time between each step set to 2 s.
Atomic force microscopy (AFM) images were collected in
tapping mode with a Bruker Multimode three-dimensional
nanoscope, using a microfabricated silicon cantilever type
TAP-300G, with a tip radius <10 nm and a force constant of
~20—75 N m™'. Pristine SWCNTs-f-OH from DMF
dispersion were deposited onto the Si-wafer substrates by
drop-casting (~0.01 mg mL™'). The X-ray photoelectron
(XPS) spectra were acquired in a surface analysis ultrahigh-
vacuum system (SPECS GmbH) equipped with a twin Al-Mg
anode X-ray source and a multichannel hemispherical sector
electron analyzer (HSA-Phoibos 100). The energy resolution
was set to 1.2 eV and the photoelectron take-off angle was 45°
with respect to the surface normal. All binding energies are
given +0.1 eV and were referenced to the SiO, core level at
103.5 eV.>** Spectral analysis was performed with the help of
a least squares curve-fitting program (WinSpec) developed at
the Laboratoire Interdisciplinaire de Spectroscopie Electro-
nique, University of Namur, Belgium, and included a Shirley
background subtraction. The profile of the peaks was taken as a
convolution of Gaussian and Lorentzian functions. The
average uncertainty in the peak intensity determination is 3%
for nitrogen and 1% for carbon, silicon, and oxygen.
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