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Abstract: One of the most significant problems in Wireless Sensor Network (WSN) deployment is the generation 
of topologies that maximize transmission reliability and guarantee network connectivity while also maximizing 
the network’s lifetime. Transmission power settings have a large impact on the aforementioned factors. Increasing 
transmission power to provide coverage is the intuitive solution yet with it may come with lower packet reception 
and shorter network lifetime. However, decreasing the transmission power may result in the network being 
disconnected. To balance these trade-offs we propose a discrete strategy game-theoretic solution, which we call 
TopGame that aims to maximize the reliability between nodes while using the most appropriate level of 
transmission power that guarantees connectivity. In this paper, we provide the conditions for the convergence of 
our algorithm to a pure Nash equilibrium as well as experimental results. Here we show, using the Indriya WSN 
testbed, that TopGame is more energy-efficient and approaches a similar packet reception ratio with the current 
closest state of the art protocol ART. Finally, we provide a methodology for further optimization of our work 
using an indicator function to distinguish between satisfactory and poor links. 
 
Keywords: Transmission power, Transmission reliability, Potential game, Pareto optimality, Packet reception 
ratio. 

 
 

 
1. Introduction 

 
A significant problem in Wireless Sensor Network 

(WSN) topology management is to guarantee 
connected network topologies that have a high 
transmission reliability. The simple approach would 
be to increase the radio transmission power levels of 
unconnected nodes. However, this is too simple and 
does not account for the complexities of the wireless 
channel. An increase in transmission power might 
cause an increase in interference, decreasing the 
number of packets received (i.e. lowering Packet 
Reception Ratio, or PRR). On the other hand, as we 
see in [43], if the distance between the transmitter-

receiver and interferer-receiver is difference by 
approximately a factor of 2, interference does not 
cause packet loss. This indicates that a node may 
select a high transmission power level, in order to 
strengthen its signal, without suffering from packet 
loss. There is a sweet spot in PRR related to 
transmission power levels that can keep PRR to a high 
level while not using a larger transmission power level 
than necessary. The transmission power also affects 
the energy consumption of the node, directly 
influencing the lifetime of the WSN [4]. In order to 
handle this trade-off we present a discrete strategy 
distributed game-theoretic approach that maximizes 
each node’s PRR while using the optimal transmission 
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power from an optimization problem; guaranteeing 
connectivity. We call our approach TopGame. 

Specifically, we focus on the trade-offs between 
energy consumption, and PRR. We use game theory, 
since it can appropriately describe the behavior of 
selfish nodes and find an optimal solution in a 
distributed manner. Modeling systems with selfish 
algorithms have been shown to provide efficient 
solutions that improve network performance [50]. We 
consider nodes to be individual players that play 
selfishly in order to find a best response for their 
objectives. In this paper we present our model as it is 
in [44]. We prove that this game is a potential game 
[32]. Potential games are games where the incentive 
of players to change their strategy can be expressed in 
a single global function, the potential function. 
Potential games have been used in wireless networks 
in a plethora of problems, including power control 
[21, 42], cognitive radio [36], gateway selection [41] 
and channel allocation [11]. In our game-theoretic 
formulation we prove that there is an equilibrium 
point. Next, we provide testbed results to show the 
convergence of our proposed algorithm and we 
compare it to the closest state of the art algorithm, 
Adaptive Robust Topology (ART)1, with respect to 
connectivity, energy-efficiency and PRR. To our 
knowledge this is the first practical topology control 
game that has been evaluated on a real testbed system, 
and show the following: • TopGame exhibits slightly lower network PRR 

than ART, since it exploits a Transmission 
Reliability metric to determine each node’s final 
transmission power. • Using TopGame, the network’s relative energy 
consumption is less by 5 % than ART’s, due to the 
fact that TopGame can use a per node 
transmission power setting, which remains so 
after the optimization process. Also, connectivity 
is preserved. • TopGame’s operation increases contention for 
accessing the wireless medium, since it keeps a 
steady transmission power level and it includes 
the bootstrapping period. This explains the 
slightly less PRR of our approach. • TopGame includes mathematical proofs to 
support the convergence of each node’s 
transmission power in the form of the Nash 
equilibrium of a potential game. • We prove that the Price of Stability and Price of 
Anarchy of TopGame is 1. This shows that 
TopGame can find the optimal equilibrium of the 
game. • We formulize participation in the maximization 
process of nodes with PRR less than 20 % using 
an indicator function and we convert the problem 
to its equivalent using a sigmoidal function. We 
employ a non-convex optimization technique to 
find the near-optimal solution, using the dual 
problem and the duality gap. 

                                                           
1 Note that by ART we mean the optimized ART. 

• We force a heuristic to stabilize the 
neighbourhood when the duality gap is positive. 
The paper is structured as follows: Section 2 

provides the related work, Section 3 introduces 
topology control in WSN, Section 4 describes game 
theory basics and potential games, Section 5 formally 
describes TopGame, Section 6 shows the 
experimental results obtained, Section 7 presents a 
discussion on further optimization and Section 8 
presents the conclusions. 

 
 

2. Related Work 
 
The characteristics and behaviors of wireless links 

are now more understood. There has been work 
measuring the effects of varying power levels and 
showing the irregularity of radio ranges and the lack 
of link symmetry [39, 51]. The relationship between 
PRR and RSSI for the Chipcon CC2420 radio was 
established in [28]. Subsequent work then looked at 
the differences in behavior between indoor and 
outdoor networks, and fluctuations in link quality over 
longer durations of time [19]. 

Regarding of Topology Control (TC) specifically, 
[19] contributes a comprehensive review of this field 
which we summarize. Given the diversity of link 
behaviors influenced by their environment, 
experimentation for much of the early TC work was 
carried out using graph theory and simulation studies 
for tractability reasons. Yet, this work did not consider 
aspects like realistic radio ranges, node distributions 
or node capability/capacities into account, limiting 
their usefulness for real sensor networks [26, 27, 9, 6, 
17]. For example, some have assumed that link costs 
are proportional to link length, but in reality a more 
complex relationship is evident [39, 15, 51]. The main 
competitors in the practical Topology control area are 
PCBL [39] and ART [19], which we introduce next. 

PCBL was derived from link quality observations 
showing that links with a very high PRR remain quite 
stable. They then categorize links as blacklisted, 
middling or highly reliable. The power in the latter is 
minimized to their lowest stable power setting while 
the blacklisted are not used at all. The middling links 
are those that lie between the two and are set to full 
power. Given the expense of probing the network to 
establish the link categories, this protocol cannot work 
with dynamic routing protocols such as CTP [18]. 
CTP aims to find the least expensive routes through 
the network. To overcome such link probing, link 
quality metrics have been used to approximate PRR in 
ATPC [28]. Specifically there is a link between RSSI 
and PRR, and LQI and PRR over a monotonically-
increasing curve. Further, linear correlations between 
transmission power levels and RSSI/LQI are observed 
at the receiver but are different for each environment 
monitored. Therefore, ATPC estimates the slope and 
uses closed feedback to adjust the model to the current 
situation to achieve lower bound RSSI (PRR). 
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Hackmann et al., showed that RSSI and LQI 
cannot always realistically estimate PRR in indoor 
environments [19], nor can instantaneous probing 
represent the behaviors of a link over time. They 
propose ART, which does not rely on estimates of link 
quality nor does it involve long bootstrapping phases. 
Being more dynamic, ART adapts link power to 
changes in the environment as well as contention 
using a gradient. Also, where applications expect 
acknowledgment messages, ART can piggyback these 
to reduce communication overhead. ART selects the 
appropriate transmission power based on the failures 
observed when the target PRR is 95 % and a 
contention gradient. 

In [20], the authors proposed a distributed 
topology control and channel allocation game-
theoretic algorithm. The main objective of the work is 
the relief of interference and the energy consumption 
balancing. They examined the connection between 
topology control and channel allocation. They 
designed a game-theoretic model that takes into 
account transmission power, energy consumption and 
interference suffered by a node. They have proven the 
existence of Nash Equilibrium and they developed an 
algorithm that preserves connectivity by jointly 
setting the transmission power and channel. Lastly, 
their algorithm converges to Pareto optimality. 

Tan et al. [46], suggested a topology control 
scheme where every node tunes its transmission 
power adaptively, in order to use its harvested energy 
in an efficient manner. The authors, proposed an 
ordinal potential game model where high harvesting 
nodes cooperate with the low harvesting nodes to 
ensure network connectivity. They proved the 
existence of a Nash Equilibrium and they designed an 
algorithm that achieves it. 

Abbasi at al. [1], investigated the issue of topology 
control in wireless sensor networks, in order to 
perform energy consumption minimization and 
energy balancing. Their approach accomplished their 
objectives by adjusting transmission power on the 
nodes and preserving connectivity. The authors 
utilized a game-theoretic scheme to address energy 
welfare topology control. They showed that their 
proposed game-theoretic solution is a potential game 
and it achieves a unique Nash equilibrium, which is 
Pareto optimal as well. 

Nahir et al. [34], provided a game-theoretical 
solution to the topology control problem, by 
addressing three major issues: the price of establishing 
a link, path delay and path congestion proneness. They 
established that bad performance due to selfish play in 
the considered games is significant, while all but one 
are guaranteed to have a Nash equilibrium point. 
Furthermore, they showed that the price of stability is 
typically 1; hence, often optimal network performance 
can be accomplished by being able to impose an initial 
configuration on the nodes. Furthermore, the authors 
express their concern regarding the computational 
tractability of their solution. 

Komali et al. [24], analyzed the creation of energy 
efficient topologies with two proposed algorithms. 

Specifically, their game-theoretic model specified that 
nodes have the incentive to preserve connectivity with 
a sufficient number of neighbours and that the 
network will not partition. They proved that their 
game is an exact potential game and that a subset of 
the resulting topologies is energy efficient. They 
addressed the major issue of fair power allocation by 
providing the argument of efficient allocation vs fair 
allocation. 

 
 

3. WSN and Topology Control 
 
Wireless sensor networks are networks of small 

computational devices fitted with radio transceivers 
for communication and sensors to capture data. 
Topology control can be defined by the construction 
of a graph that represents the nodes and links in the 
network that does not consist of any disjoint parts. 
Good topology control mechanisms can be 
characterized by providing an energy efficient 
network, offering high throughput and doing so with 
a low overhead. Energy-efficiency equates to the use 
of the minimum transmission power that guarantees 
connectivity, where throughput can be maximized by 
reducing interference and contention on the wireless 
medium. However, minimum transmission power 
does not guarantee a high reliability of transmission 
resulting in high throughput. This is due to a weak 
signal that may be significantly influenced by a small 
portion of interference. 

For the most part, hitherto link asymmetry has 
been ignored, and the use of different transmission 
power levels when a node transmits to different 
neighbours may cause undesired packet loss. In 
addition, in a dense network, a node having a large 
number of neighbours may not be able to cope with 
transmission power changes when unicasting to 
different recipients in that neighbourhood while 
expecting to achieve a high PRR as well. As observed 
by Ahmed et al. [2], environmental effects and 
different node transmission powers are the major 
cause of link asymmetry in WSNs. 

 
 

4. Game Theory and Potential Games 
 
Game theory studies mathematical models of 

conflict and cooperation [49], between nodes in our 
work. Therefore, our meaning of the term game 
corresponds to any form of social interaction between 
two or more nodes. The rationality of a node is 
satisfied if it pursuits the satisfaction of its preferences 
through the selection of appropriate strategies. The 
preferences of a node need to satisfy general 
rationality axioms, then its behavior can be described 
by a utility function. Utility functions provide a 
quantitative description of the node’s preferences and 
the main objective is therefore the maximization of its 
utility function. In this work, we focus on strategic 
noncooperative games, since we consider nodes to act 
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as selfish players that want to preserve their interests. 
The intuition behind this is that the nodes will reach 
an optimal state, without having to pay a price to 
maximize their payoffs. The Nash equilibrium is the 
most important equilibrium in non-cooperative 
strategic form games. It is defined as the point where 
no node will increase its utility by unilaterally 
changing its strategy. It got its name from John F. 
Nash who proposed it [35]. 

In 2008, (Daskalakis et al., 2008) Daskalakis 
proved that finding a Nash equilibrium is 
PPADcomplete. Polynomial Parity Arguments on 
Directed graphs (PPAD) is a class of total search 
problems [38] for which solutions have been proven 
to exist, however, finding a specific solution is 
difficult if not intractable. This development lead 
researchers to concentrate a specific class of games 
called ’Potential Games’, due to the important 
properties that pure Nash equilibria will always exist 
and best response dynamics are guaranteed to 
converge. 

This class of games consists of the exact and 
ordinal potential games. In this paper we utilise exact 
potential games and refer the reader to [32] for details 
on potential games. In order to use exact potential 
games, it is essential to have a potential function that 
has the same behavior as the individual utility 
function, when a player unilaterally deviates. 

More formally: 
A game , with N players, A strategy 

profiles and u the payoff function, is an exact potential 
game if there exists a potential function 

 
  (1) 

 
subject to 
 

  (2)  
where σi is the strategy of player i, σ’i is the deviation 
of player i, σ−i is the set of strategies followed by all 
the players except player i and A−i is the set of strategy 
profiles of all players except i such as 
 

 
(3) 

 
 

5. TopGame 
 
We developed the TopGame algorithm that aims 

to guarantee connectivity, by locating the best 
response of PRR and transmission power. The 
intuition behind this research is that TopGame will 
force nodes to converge to the best transmission 
power. 

A WSN consists of a set of nodes N and each node 
i ∈ N can switch its transmission power pk

i ∈ P, where 
k ∈ 3,7,11,15,19,23,27,31 and P is the set of the 
available transmission power levels of our example 
CC2420 transceiver. In this paper, we employ  

4 transmission power levels, namely 11,15,19,23, in 
order to identify the PRR when transmission powers 
that operate mostly on the gray area [40] are used. Let 
a vector P = (p1, p2, ..., p|N|) be an allocation of the 
transmission power level of each sensor node. The 
total number of possible power allocations is 4|N|. The 
aim of this paper is to determine a power allocation in 
a distributed way, which can achieve a best response 
rade-off between network connectivity, energy-
efficiency and transmission reliability, using game 
theory. 

 
 

5.1. Connectivity Definition and 
Measurement 

 
In this paper we consider the small-world Model 

A from [16], where there are N nodes in the network 
and each one arbitrarily selects m nearest neighbours 
to connect to. Essentially, we utilise the variant of this 
small-world model, where node locations are being 
modeled by a stochastic point process. The number of 
neighbours consists of nearest neighbours and 
shortcuts. A shortcut is an edge between two nodes if 
either of the two nodes exist in the nearest neighbour 
set of the other. If a node is connected by a nearest 
neighbour and a shortcut, multiple edges are replaced 
by a single one. The presence of the shortcuts reduces 
the network diameter. Furthermore, we have to note 
that m is the number of neighbours a node has in terms 
of a spatial graph, and (N−1)p is the number of 
neighbours it has via shortcuts. In order to ensure 

connectivity the quantities  and 

, where δ > 0, are sufficient. 
Hence connectivity is preserved with a smaller degree 
of (nearest neighbours plus shortcuts). We select a 
degree of 6 for each node. It is well known that the 
node degree can be reached by adjusting the 
transmission power; hence, the transmission power 
level that satisfies connectivity satisfies the condition 
that more than 6 nodes exist in the neighbourhood of 
each node.  

 
 

5.2. Transmission Reliability (TR) 
 

For a wireless link (i, j), the Packet Reception 
Ratio PRRi,j is defined as the ratio of the number of 
packets received by node j over the number of packets 
sent by node i. It can be expressed by approximation 
as 

 

 , (4) 
 
where l is the packet length in bits. 

The Bit Error Rate (BER), which we denote as ξi,j, 
is given by the following formula [14] 
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  (5) 
 
where γi,j is the Signal-to-Interference-plus-Noise 
Ratio (SINR) of the transmission from node i to node 
j. γi,j is given by 

 

  (6) 
 

where N0 is the white noise and Hi,j is the channel gain 
of the wireless link (i, j) and Ht,j is the channel gain 
between the receiver and an interferer. Due to the path 
loss, the larger the distance between nodes t and j the 
smaller the Ht,j. We focus on static WSNs, hence, we 
assume that the channel is slow fading in nature and 
the channel gain of every link remains constant before 
the convergence of the TopGame algorithm. 

To measure the reliability of links around node i, 
we define a new metric called Transmission 
Reliability (TRi) as 

 

 
(7) 

 

where pi is the power level of node i, p−i means the 
power levels of all nodes except i, Ni(pi, p−i) is the set 
of nodes such that ∀j ∈ Ni(pi, p−i), PRRi,j > 0. 

For instance, Fig. 1 shows a sub-graph of a WSN 
for a given transmission power allocation. For each 
link (i, j) PRRi,j > 0. In this sub-graph  
N6 = 2,15,7,11 and βTR6 = (PRR1,2 + PRR15,2 + 
PRR12,2+PRR2,15+PRR9,15+PRR7,15+PRR15,7+ 
PRR10,7+PRR11,7+PRR7,11+PRR14,11)/11. 
In practice, every node i can obtain TRi at run time by 
every node j in Ni calculating the  as the average 
PRRk,j, k ∈ Nj −{i} and periodically broad-casting

. Thereafter node i calculates TRi. 
 
 

 
 

Fig. 1. An example to explain Transmission  
Reliability metric. 

5.3. Utility and Potential Function 
 

We define the utility function of each node i as, 
  

 ui(pi)= TRi −cipi (8)  
 
where ci is the price assigned to each strategy played 
by a node/player. 

Our strategy domain consists of 4 strategies, which 
are 11,15,19,23, which correspond to the values in 
table 1. Notably, the 2 smallest and 2 largest 
transmission power levels of the CC2420 radio have 
been excluded. The main reason is to see TopGame 
operate under medium to large SINR regime. The 
second reason is to simplify TopGame. 

 
 

Table 1. Transmission Power Levels and Values. 
 

PA LEVEL dB mA 
11 -10 11.2 
15 -7 12.5 
19 -5 13.9 
23 -3 15.2 

 
 
It is straightforward to see that the above utility 

function has a minimum under the following 
condition of medium to high SINR values. We do the 
price assignment in a similar way with [10]. The 
prices assigned at every node has the value 1 except 
when it reaches its maximizer. Each node then assigns 
the price given below: 

 
 ci = diff(TRi) (9) 
 
Hence, if we take the first derivative to obtain the 

minimum, it follows that there is a local minimum. 
Since we wish to maximize the function we simply 
take the negative of (8). 

 
 ui(pi)= cipi −TRi (10) 
 
Thereafter we wish to define the potential function 

and prove that the game G is a potential game. 
Proposition 1. The game G is a potential game. The 
potential function is given by 
 

  (11) 
 
Proof. This comes as a result by taking the 

characterisation of the potential games in [32] where 
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Since only one node can deviate 
 

 
 
Hence we conclude that Γ is an exact potential 

game. This proof comes as a result of the fact that 
given a strategy of a node/player m, pm ∈ N and an 
alternative strategy  N and taking the assumption 
that the strategies of all the other nodes remain the 
same, we have 

 

, 
(12) 

 
where p−i is the transmission power strategy of all the 
nodes excluding that of the node i. Hence, the game is 
a potential game. 
 

Remark 3.1: The potential function is significant 
since its maximization, when a specific policy is 
played, results in this policy being an equilibrium of 
the designed game. In this work, the strategy set is 
discrete; hence, in the case that the potential function 
satisfies particular types of concavity, such as the 
Larger Midpoint Property (LMP) [48], the converse is 
true as well. If a policy is an equilibrium, it maximizes 
the potential function. Thus, we may consider the 
TopGame as the following optimization problem. 

 

 (13) 
 

As presented in [3], we consider two n-
dimensional vectors δ(1), δ(2). Definition 1: [29] A 
vector δ(2) majorises δ(1), which we denote as  
δ(1) ≺ δ(2), if δ(2) is more ‘irregular’ in the following 
fashion: 

 

 , (14) 
 

where δ[i](m) is the permutation of δi(m) satisfying the 
condition δ[1](m) ≥ δ[2](m) ≥ ... ≥ δ[n](m),m = 1,2 

Equation (8) suggests that the largest element of 
δ(2) is larger than the largest element of δ(1). 
Consequently, the smallest element of δ(2) is smaller 
than the smallest element of δ(1). Thereafter we 
proceed in Schur convexity properties of majorisation. 

Definition 2: A function f : Rn →R is Schur 
concave if δ(1)≺δ(2) suggests f(δ(1))≥ f(δ(2)). f is 
Schur convex if the inequality suggests that f(δ(1))≤ 
f(δ(2)). 

Definition 1 dictates that there is strong 
majorisation; however, at least one of the inequalities 
of (8) is strict. Furthermore, Proposition C.2 of [29] 
dictates that a function f : Rn → R that is symmetric 
and convex (concave), is also Schur-convex 
(concave). Hence, we need to show that our potential 

function is Schur-concave, in order to proceed with 
the majorisation properties. 
 

Lemma 1. Function V is concave in N. 
Proof. It is obvious that the function is concave, 

since if we take the second derivative test the first term 
will be set to 0 and the second term is a concave term 
(raised to power) for medium to large SINR values. 
Note that for very high SINR values the second 
derivative of (10) become positive and the function 
becomes convex as we can deduct from [30]. 

 

Proposition 2. If the function u(p) is concave then 
the function V(p) is Schur concave. 

Proof. The proof is given by using the following 
corollary from [29]. 

 

Corollary 5.0.1. Let  where g is 

concave (convex). Then φ is Schur-concave (convex) 
 

Theorem 5.1. The Game G reaches the global 
optimum via the potential function V(p) 
maximization. 

Proof. Recall that the potential V(p) Schur 
concave and it satisfies the LMP. It follows that if p∗ 

is a Nash equilibrium strategy, then it maximizes the 
potential and is the global maximum. Assume that 
there is another strategy profile p0∗ that maximizes the 
potential and is the global maximum. This means by 
p∗ majorises p0∗. Since V(p) is Schur concave it 
follows by definition that V(p0∗) ≥ V(p∗). Since, p∗ 
maximizes the potential, this is only possible when 
V(p0∗)=V(p∗). Hence, p∗ is the global optimum. 

This also comes as a result of the fact that we have 
shown that there is a critical point in the function V(p). 
It follows from [23] - Theorem 2.22 - that the critical 
point p∗ is the global optimum.  

Notably, Schur concavity of V not only allows us 
to capture the optimal policies, but it allows the 
comparison of the performance of two non-optimal 
strategies, whenever one of the policies majorises the 
other.  

 

Theorem 5.2. The price of stability of the game  
is 1. 

Proof. It follows from the previous theorem that 
shows that the game reaches the global optimum.  

Thereafter, we will proceed with the derivation of 
the Price of Anarchy (PoA) [37], in order to further 
check the optimality of the game. Firstly, though, we 
start with the following result. 

 

Definition 5.1. (Pareto efficient) [33] A strategy 
profile (pOPT

i , pOPT
−i ), is considered to be strongly 

Pareto efficient if and only if there exists no other 
strategy profile (pi, p−i) such that ui(pi, p−i)≥ui(pOPT

i ,

 N and ui(pi, p−i)> ui(pOPT
i , pOPT

−i ) for at 
least one node m. On the other hand, a strategy profile 
(pOPT

i , pOPT
−i ) is weakly Pareto efficient if and only if 

there exists no strategy profile (pi, p−i) such that ui(pi, 
p−i) > ui(pOPT

i , pOPT
−i ),∀i ∈ N. We use the term Pareto 

efficient for both weak and strong cases. 
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Definition 5.2. A pure strategy NE is a Pareto 
efficient pure strategy NE if it is Pareto efficient. 
 

Theorem 5.3. A maximizer of V, which coincides 
with the optimal solution of (11), is a Pareto efficient 
pure strategy NE. 

Proof. We have shown previously that the game G 
reaches the maximum which is a pure strategy NE. 
Hence (pOPT

i , pOPT
−i ) constitutes an optimal solution 

of (11). There is no other strategy that maximizes the 
potential. That is that there is no strategy profile 
(p1,...pi)∈ Pii∈N, such that 

 

  (15) 
 
Thus, considering Definition 5.2, (pOPT

i, pOPT
−i ) is 

Pareto efficient. Moreover, let us assume the ∀i ∈ N, 
pi is an alternative strategy of node/player i, where pi 

6= pOPT
i . Then, we obtain 

 

  (16) 
 
We see that there is no node that can unilaterally 

change its transmission power/ strategy, in order to 
increase its utility. Furthermore, the strategy profile 
(pOPT

1 ,..., pOPT
i ) is also a pure strategy NE. To 

summarize, (pOPT
1 ,..., pOPT

i ) is a Pareto efficient pure 
strategy NE. 

Since, the game G may have more than one pure 
strategy NEs, we will check the optimality of the NE 
to show the relationship between the local optimal NE 
and the Pareto efficient NE. Even though we have 
shown that the Game G goes to the global optimum, 
we will strengthen this proof even further, by 
evaluating the ratio between the highest utility and the 
worst case NE, namely the PoA. 
 

Theorem 5.4. PoA = 1, i.e. a pure strategy profile 
of G is Pareto efficient. 

Proof. We assume that pOPT
i is a Pareto efficient 

NE. Also, assume that p∗i is an arbitrary pure strategy 

NE . Then for any arbitrary node/player 
i, we have 

 

  (17) 
 
Note that ui(p∗) ≥ ui(pOPT

i ,  according to the 
definition of a game. Therefore, we have 

 

  (18) 
 
Furthermore, since we have assumed that pOPT is a 

Pareto-optimal pure strategy NE, ∀i ∈ N 
 

 V(pOPT ) ≥ V(p∗) (19) 
 

Combining (18) and (19) we have V(pOPT) ≥ 
V(p∗),∀i ∈ N. Hence, PoA = 1. 

 
 

5.4. Algorithm Design 
 
The TopGame algorithm is a cross-layer approach 

that encapsulates information taken from the routing, 
MAC and physical layers. In particular, the PRR and 
neighbour information are obtained from the routing 
layer, the transmission power used is acquired from 
the radio and the MAC is responsible for triggering 
the game to determine the topology in the case of 
nodes failing or newly added to the network. 

Initially, all nodes start communicating at their 
maximum transmission power pmax = 23. Node i 
collects the neighbour information, such as current 
transmission power levels used by its neighbours and 
their respective PRR. This occurs simultaneously, 
since the number of neighbours is determined via 
periodic beacons being broadcast and the PRR 
obtained by unicasting to random neighbours using a 
gossip-based protocol [12]. The nodes are also 
synchronized using beacons with a firefly-based [8] 
algorithm. 

Node i iterates through its 4 available transmission 
power levels, it computes TR for each power level and 
it finally maximizes its utility function ui. Note that for 
practical reasons the pricing of each node’s utility 
function is set to 1. The global optimum is 
accomplished as we can see in Theorem 5.1. 
Pseudocode of TopGame is presented in Algorithm 1. 

In the case of the addition or a failure of node, 
nodes that detect a change in their neighbour table 
initiate TopGame from the start, since their TR will be 
affected by the topological change. This is due to the 
fact that TopGame is a repeated game only on 
topological alterations. 

 

 
 
5.4.1. Message Overhead 

 
The message overhead per transmission power 

consists of the sum of the broadcast messages for 
synchronization and the unicast messages transmitted 
to each of the neighbours of every node. That is, 

 

   , (20)  
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where N is the number of nodes, m is the window 
of the unicast transmission to obtain PRR and M is the 
number of neighbours of every node for a given 
transmission power. 

Since fsync =Θ(1), flink =Θ(N) and M =Θ(1), 
provided some constants c1, c2, c3 we have: fsync ≤ c1, 
flink ≤ c2∗ N, M ≤ c3. Therefore, 20 can be expressed as 
follows: 

 

 
 
 

6. Experimental Evaluation and Results 
 
In order to evaluate TopGame, in comparison to 

ART, we performed 120 minute experiments using  
50 nodes selected at random on Indriya. The data rate 
of the nodes was 250 kbps and each node transmits  
4 packets per second. In addition each node calculates 
its PRR over a window of 8 packets. Each node 
finishes iterating through all the transmission power 
levels and the utility function of each power level has 
been obtained in order to proceed with the 
maximization. 

Our aim is to show that converging to lower 
transmission powers, may provide similar reception 

performance. In this section we will provide results 
that show that TopGame approaches ART [19] in 
terms of PRR and is slightly better in energy-
efficiency while ensuring that the network is 
connected. 

 
 

6.1. Performance and Energy Consumption 
 
Initially, we obtained the average PRR and relative 

energy consumption, in order to evaluate both 
algorithms globally. The network average PRR is 
provided in Fig. 2 (a). Specifically, we observe that 
TopGame exhibits an average network PRR of  
44.7 %, while ART 48.1 %. Moreover, the standard 
deviation of ART is higher than TopGame’s by 3 %. 

The difference in the PRR between the two 
schemes is not quite significant; however, we have 
shown that a game theoretic algorithm, with a more 
systematic approach, exhibits similar performance 
with a state-of-the-art practical algorithm such as 
ART. Further, the formation of less links does indicate 
that TopGame uses its utility function that finds the 
sweet spot per node. On the other hand, ART 
fluctuates between its two packet failure thresholds; 
thus, forming more links. As we have seen in a 
previous section, contention is related to the number 
of neighbours (K) of each node. Table 2 presents the 
average degree of the network and the number of links 
that are formed with TopGame and ART. 

 
 

 
(a) Average PRR (b) Average Relative Energy 

Consumption
(c) Average CCA Failures Ratio

 
Fig. 2. TopGame and ART average Relative Energy, Mean PRR and CCA failures Mean of 50 nodes. 

 
 

Table 2. Average K and formed links. 
 

 Average K Number of Links 
ART 7 360 

TopGame 7 338 
 
 
In order to examine whether the difference in the 

PRR average of TopGame and ART is a result of 
channel collision we performed 2 hour experiments 
measuring the Clear Channel Assessment (CCA) 
failures. Fig. 2 (c) presents the CCA failures ratio of 
TopGame and ART. Briefly, a CCA operation occurs 

when the MAC layer receives a packet to transmit, 
then it instructs the physical layer to check channel 
availability (CCA) in two consecutive slots. If the 
channel is found to be available in both slots, the node 
proceeds with its transmission. Otherwise, the node 
attempts CCA again after a random back-off, which it 
repeats a certain number of times and it calls a failure 
of access to the upper layer. Hence, with TopGame 
exhibiting nearly 10 % more CCA failures than ART, 
it is natural to assume that the difference in average 
PRR comes from a higher interference and collisions 
of TopGame of the bootstrapping period, since it 
initially forms a larger number of links that are 
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included in the graph. Specifically, TopGame exhibits 
43 % failures, while ART’s percentage is 33.6 %. 

In our experiments we were unable to directly 
monitor the energy consumed by the listening and 
transmitting periods of each node. Thus, we decided 
to use unicast communications as an indicator to 
calculate the relative average energy. Making the 
assumption that all nodes spend the same amount of 
energy in listening, to get a rough idea of relative 
energy consumption, we added the number of unicast 
messages transmitted by ART and TopGame with 
their respective transmission powers and multiplied 
them with the corresponding mA radio energy 
consumption. The relative energy consumption of the 
two algorithms can be seen in Fig. 2 (b). TopGame 
consumes 5 % less energy than ART, including the 
bootstrapping period. 

This is due to the fact that the nodes do not 
fluctuate on a per packet basis and they are not 
targeting a very high PRR value as dictated in the 
ART thresholds; hence, TopGame is slightly more 
energy efficient. We present an example of two links 
from both TopGame and ART, in order to show the 
difference in the switching between transmission 
powers and the convergence of TopGame. From the 
Figs. 3 and 4, it is clear that ART switches its 
transmission power according to packet drops; hence, 
the Tx fluctuation in the figure. On the other hand, 
TopGame collects TR for each available transmission 
power and converges to the transmission power 
maximizing the utility function. Also, we are not 
aware of the energy cost of the continuous Tx switch. 
We assume it is negligible. Note that TopGame is 
repeated only when a neighbourhood change is 
detected. 

Recall that ART’s intention is to reach the target 
PRR of 95 %, yet we observe that its reception quality 
is significantly lower. TopGame also does not attain 
this lofty figure. We believe that is the case for our 
scheme because of the bimodal distribution of 
802.15.4 link qualities [45]. 

 
 

 
 

Fig. 3. ART and TopGame Node 13 Tx levels. 
 
 

 
 

Fig. 4. ART and TopGame Node 41 Tx levels. 
 
 

By looking at the Cumulative Density Functions 
(CDF) of the two algorithms in Fig. 5, we observe that 
TopGame has a slightly higher probability of forming 
poorer quality links of PRR lower than 20 %. ART has 
a lower probability of forming medium to high quality 
links. Furthermore, TopGame exhibits a slightly 
higher probability of establishing links with PRR over 
80 %. It would be strong to claim that TopGame is 
better than ART; however, approaching the numbers 
of ART is significant, since it relies in concrete 
theoretical basis. 

Finally, we compared the RAM and ROM 
overhead of TopGame with ART. Table 3 shows that 
TopGame consumes 2348 more ROM bytes than 
ART, while it produces an overhead in RAM of  
342 bytes. 

 
 

Table 3. RAM and ROM (bytes). 
 

 RAM ROM 

TopGame 3426 25228 
ART 3084 22880 

 
 

 
 

Fig. 5. CDF for ART and TopGame. 
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6.2. Connectivity 
 

After we obtained the results we evaluated 
connectivity offline using method that determines 
whether the resulting graph is connected. This was to 
evaluate the connectivity model we discussed in a 
previous section. We have shown that the average 
degree of each node is greater than 6 nodes. We 
derived the available links from TopGame and ART’s 
data sets and we created their respective adjacency 
matrices. Thereafter, we used the matrices to find a 
zero eigenvalue. In the case that the corresponding 
eigenvector has 0s, then a sum of non-zero number of 
rows/columns of the adjacency is 0 [22]. Hence, the 
degrees of these nodes are 0 and the graph is 
disconnected. Both TopGame and ART resulted in 
fully connected graphs. 

 
 

6.3. Self-configuration and Self-healing 
 

In the case of a node addition or failure the two 
algorithms are expected to behave differently. ART 
will adjust its transmission power levels depending on 
the number of failure threshold and the target PRR. 

On the other hand, TopGame includes a 
mechanism, which allows it to become aware of the 
change in the neighbourhood. Specifically, in the case 

that TopGame detects a topological change it iterates 
through the 4 transmission powers again, starting from 
the highest one. This will trigger the other nodes’ 
initialization period as well, since the transmission 
ranges of the nodes affected by the change will be 
informed about the topological change. We simulated 
a node addition on Indriya by starting the radio of 
node 18, calling the Tinyos AMControl.start() and 
AMControl.stop() interfaces respectively after a 
period of 30 minutes that was measured by a timer. 
Figs. 6 (a) and 6 (b) show the node degrees of 
TopGame and ART respectively. TopGame 
converges with 11 neighbours, while ART has 12. 
Furthermore, Fig. 6 (c) presents the tx levels of the 
two algorithms. TopGame after iterating through the 
4 tx levels converges to tx level 19. ART, on the other 
hand fluctuates through the entire set of the 
transmission power levels, showing the failures it 
suffers from on a per link basis. 

Figs. 7 (a) and (b) show node 15 degree of both 
algorithms before and after node 18 starts 
participating in the network. Node 15 detects the 
topological change in its neighbourhood and start the 
TopGame algorithm iterating through the available set 
of transmission power levels as can be seen in Fig. 7 
(c). The node degree before and after the topological 
change remain the same. 

 
 
 

 
 

(a) TopGame node 18 degree (b) ART node 18 degree (c) Tx levels of node 18 
 

Fig. 6. Node 18 degree and Tx levels after it joins the network. 
 
 

  

 
(a) Node 15 degree before node 18 

start 

 
(b) Node 15 degree after node 18 

start 

 
(c) Tx levels of node 15 

 
 

Fig. 7. Node 15 degree and Tx levels after 30 min start. 
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7. Further Optimization Discussion 
 
The result presented above include links between 

nodes that exhibit a very poor PRR, due to their 
location and/or conditions of the experiments. We 
characterize these links as bad links and we set the 
threshold of this characterisation to a PRR of 20%. We 
denote this threshold as PRRthr. Thereafter, we define 
an indicator function to indicate whether a link 
participates in the utility maximization process with a 
poor or satisfactory/good PRR as 

 

   (21) 
 

We are facing the issue of links to participate in the 
neighbourhood establishment of the utility that 
significantly affects the maximization process; 
therefore, the transmission power that it will converge 
to. Thus, we should have a level of cooperation 
between links of the neighbourhood, in order to 
accomplish some level of global optimality. Thus, we 
formulate our communication participation problem 
as an optimization problem: 

 

  (22) 
 

where N is the set of nodes and link(i, j) is the 
established link between a node i and a node j. 

The problem above is a non-smooth optimization 
problem due to the indicator function. However, the 
indicator function can be ‘smoothened’ by using the 
sigmoid function. The sigmoid function is a 
continuous function and is given below: 

 

  (23) 
 
We can see that when x is larger than the threshold 

b, sig(x) rises to 1. On the other hand, when x is less 
than the threshold it drops to 0. The parameter a is the 
factor the influences the behaviour of the sigmoid 
function near the threshold. To continue, we replace 
the indicator function with the sigmoid function and 
we transform the optimization problem as 

 

  (24) 
 

Our problem is relaxed and can be solved by 
nonconvex optimization methods [13], [7]. We know 
that the duality gap in non-convex problems is 
positive; hence, this type of problems cannot be solved 
in a distributed manner. However, as identified in 
[47], a subset of non-convex optimization problems 
can be identified for which the duality gap is zero. 

Thus, the distributed gradient-based algorithm is 
suitable to converge to the optimal solution. 

To this end, we define the Lagrangian function as 
 

L(PRR,λ)= fi(PRR)−2PRRiλ+PRRmin
i λ−PRRmax

i λ 
 (25) 

 
The gradient of the Lagrangian function with 

respect to the variables PRRi and λ are 
 

  (26) 
 

  (27) 
 
Thus, we have the iterative algorithm equation 

defined as 
 

  (28) 
 

 , (29) 
 
where β(t) are the small positive constants. 

At this point, we have to clarify that we might not 
be able to locate and reach the optimal solution in this 
problem. This is due to the fact that the duality gap 
may be positive. However, by using sigmoidal 
functions the optimal PRRi may lie in the concave 
region of f(PRRi); hence according to [47] the duality 
gap will be zero and our algorithm will converge to 
the optimal primal solution, following the properties 
regarding the step sizes of βλ and βPRR of the Gradient 
Method [5]. 

However, as we see in other works [25], sigmoidal 
functions may result in an oscillation of the algorithm 
between zero and positive values of PRRi, under 
specific conditions. In cases like these, we employ a 
heuristic to produce a stable communication between 
participant nodes. A heuristic is to remove the 
participant nodes with low PRR, since they are 
destabilizing the communication party because of 
their inability to engage. 

In the Fig. 8, we can see the average PRR of 
TopGame as opposed to ART’s when the bad PRR 
links have been minimized. We see that the PRR of 
TopGame slightly increases. This coincides with the 
CDF in Fig. 5, where we concluded that we establish 
bad links with small probability. 

 
 

8. Conclusions 
 
Compared with the state of the art protocol ART, 

we showed that TopGame is a general solution 
providing efficient robust Topology Control 
minimizing the costs of communications while 
ensuring connectivity.  
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Fig. 8. PRR of TopGame and ART after TopGame 
excludes bad links. 

 
First, we evaluated ART and TopGame on Indriya 

using 50 nodes to determine the average PRR and the 
average relative TX power. We evaluated 
connectivity based on a method that checks the 
eigenvector of each algorithms adjacency matrix 
(links) and determined that the resulting graph is 
connected. The experiments on Indriya showed that 
TopGame reduces power consumption compared with 
ART without significantly degrading link quality. 
Macro-benchmarks comparing TopGame to ART 
protocol indicated that TopGame provides guaranteed 
connectivity and exhibited slightly lower PRR than its 
competitor and 5 % improvement on energy 
consumption. The corresponding Probability Density 
Functions showed that TopGame has a slightly higher 
probability of having links of low quality (< 20 %) 
than ART. Moreover, ART has a lower probability of 
creating links of > 20 – 80 % PRR. Finally, TopGame 
has a better probability of creating high PRR links  
(> 80%) This is a promising factor of the comparison 
between the two algorithms in terms of performance, 
since the average network PRRs were not 
significantly different. In terms of energy 
consumption, we presented results that show that 
TopGame converges to lower transmission power 
levels than ART making it more energy-efficient. The 
main differences between ART and TopGame are that 
ART establishes per-link power levels while 
TopGame establishes power settings for a given 
neighbourhood of nodes, and thus can be seen as non 
link-based. A node running ART will have to switch 
between transmission powers to transmit packet to its 
neighbours. This has an impact on the transmission 
power selection in larger networks, since the target 
PRR (95 %) is not reached and nodes select high 
transmission powers. TopGame’s power is set to 
cover the neighbourhood and therefore has no such 
switching overhead. ART obtains data and makes 
decisions by indirectly considering link asymmetry in 
that; hence ART selected higher transmission power 
levels. In fact, their non optimized version not using 
the contention gradient verify these phenomena and 
even the improved version also shows a decrease in 
PRR. However, link asymmetry is taken into account 
in TopGame; where bi-directional information helps 
to ensure both the connectivity of all nodes and that 

we will converge at a Nash Equilibrium. Finally, in 
terms of implementation, ART is closely coupled to 
CTP whereas, though TopGame is slightly more 
expensive in terms of speed and footprint, it is 
agnostic to WSN Operating System or stack 
implementations and is therefore more generally 
applicable. We aim to interface our approach with 
CTP or other state of the art routing protocol such as 
the Backpressure Collection Protocol (BCP) [31]. 

 
 

References 
 

[1]. Mohammadjavad Abbasi and Norsheila Fisal, 
Noncooperative game-based energy welfare topology 
control for wireless sensor networks, IEEE Sensors 
Journal, 15, 4, 2015, pp. 2344–2355. 

[2]. N. Ahmed, P. Misra, S. Jha, and D. Ostry, 
Characterization of link asymmetry in wireless sensor 
networks, in Proceedings of the 7th ACM Conference 
on Embedded Networked Sensor Systems (ACM 
SenSys), 2009, pp. 373–374. 

[3]. Eitan Altman, Anurag Kumar, and Yezekael Hayel, A 
potential game approach for uplink resource 
allocation in a multichannel wireless access network, 
in Proceedings of the 4th International ICST 
Conference on Performance Evaluation 
Methodologies and Tools, 2009, p. 72. 

[4]. C. Antonopoulos, A. Prayati, T. Stoyanova,  
C. Koulamas, and G. Papadopoulos, Experimental 
evaluation of a WSN platform power consumption, in 
in Proceedings of the IEEE International Symposium 
on Parallel & Distributed Processing (IPDPS’09), 
2009, pp. 1–8. 

[5]. Dimitri P. Bertsekas, Nonlinear programming, Athena 
Scientific, Belmont, 1999. 

[6]. D.M. Blough, M. Leoncini, G. Resta, and P. Santi, 
Topology control with better radio models: 
Implications for energy and multi-hop interference. 
Performance Evaluation, 64, 5, pp. 379–398, 2007. 

[7]. Paul T Boggs and Jon W Tolle, Sequential quadratic 
programming, Acta Numerica, 4, 1995, pp. 1–51. 

[8]. M. Breza and J.A. McCann, Lessons in implementing 
bio-inspired algorithms on wireless sensor networks, 
in Proceedings of the NASA/ESA Conference on 
Adaptive Hardware and Systems (AHS’08), 2008,  
pp. 271–276. 

[9]. M. Burkhart, P. Von Rickenbach, R. Wattenhofer, and 
A. Zollinger, Does topology control reduce 
interference?, in Proceedings of the 5th ACM 
International Symposium on Mobile Ad Hoc 
Networking and Computing (ACM MOBIHOC), 2004, 
pp. 9–19. 

[10]. Utku Ozan Candogan, Ishai Menache, Asuman 
Ozdaglar, Pablo Parrilo, et al., Near-optimal power 
control in wireless networks: A potential game 
approach, in Proceedings of the 29th IEEE Conference 
on Information Communications INFOCOM, 2010, 
pp. 1–9. 

[11]. Jiming Chen, Qing Yu, Peng Cheng, Youxian Sun, 
Yanfei Fan, and Xuemin Shen, Game theoretical 
approach for channel allocation in wireless sensor and 
actuator networks, IEEE Transactions on Automatic 
Control, 56, 10, 2011, pp. 2332–2344. 

[12]. S. M. Dammer and H. Hinrichsen, Epidemic 
spreading with immunization and mutations, Physical 
Review E, 68, 1, 2003, pp. 016114. 



Sensors & Transducers, Vol. 212, Issue 5, May 2017, pp. 1-14 

 13

[13]. Roger Fletcher and Michael J. D. Powell, A rapidly 
convergent descent method for minimization, The 
Computer Journal, 6, 2, 1963, pp. 163–168. 

[14]. Yong Fu, Mo Sha, Gregory Hackmann, and Chenyang 
Lu, Practical control of transmission power for 
wireless sensor networks, in Proceedings of the 20th 
IEEE International Conference on Network Protocols 
(ICNP’12), 2012, pp. 1–10. 

[15]. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, 
D. Estrin, and S. Wicker, Complex behavior at scale: 
An experimental study of low-power wireless sensor 
networks, Technical report, Citeseer, 2002. 

[16]. A. Ganesh and F. Xue, On the connectivity and 
diameter of small-world networks, Advances in 
Applied Probability, 39, 4, 2007, pp. 853–863. 

[17]. Y. Gao, J. C. Hou, and H. Nguyen, Topology control 
for maintaining network connectivity and maximizing 
network capacity under the physical model, in 
Proceedings of the 27th Conference on Computer 
Communications (INFOCOM’08), 2008, pp. 1013–
1021. 

[18]. O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and 
P. Levis, Collection tree protocol, in Proceedings of 
the 7th ACM Conference on Embedded Networked 
Sensor Systems (SenSys’ 09), 2009, pp. 1–14. 

[19]. G. Hackmann, O. Chipara, and C. Lu, Robust 
topology control for indoor wireless sensor networks, 
in Proceedings of the 6th ACM Conference on 
Embedded Networked Sensor Systems (SenSys’ 08), 
2008, pp. 57–70. 

[20]. Xiao-Chen Hao, Mei-Qi Wang, Shuang Hou, 
QianQian Gong, and Bin Liu, Distributed topology 
control and channel allocation algorithm for energy 
efficiency in wireless sensor network: From a game 
perspective, Wireless Personal Communications, 80, 
4, 2015, pp. 1557– 1577. 

[21]. Tiina Heikkinen, A potential game approach to 
distributed power control and scheduling, Computer 
Networks, 50, 13, 2006, pp. 2295–2311. 

[22]. R. A. Horn and C. R. Johnson, Matrix Analysis, 
Cambridge University Press, 2005. 

[23]. Eduard Jorswieck and Holger Boche, Majorization 
and matrix-monotone functions in wireless 
communications, Foundations and Trends in 
Communications and Information Theory, 3, 6, 2006, 
pp. 553–701. 

[24]. R. S. Komali, A. B. MacKenzie, and R. P. Gilles, 
Effect of selfish node behavior on efficient topology 
design, IEEE Tran. Mobi. Comput., 2008, pp. 1057–
1070. 

[25]. J.-W. Lee, Ravi R. Mazumdar, and Ness B. Shroff, 
Nonconvex optimization and rate control for multi-
class services in the internet, IEEE/ACM Transactions 
on Networking, 13, 4, 2005, pp. 827–840. 

[26]. L. Li, J. Y. Halpern, P. Bahl, Y. M. Wang, and R. 
Wattenhofer, A cone-based distributed 
topologycontrol algorithm for wireless multi-hop 
networks, IEEE/ACM Trans. Netw., 13, 1, 2005,  
pp. 147–159. 

[27]. N. Li, J.C. Hou, and L. Sha, Design and analysis of an 
MST-based topology control algorithm, IEEE Trans. 
Wireless Commun., 4, 3, 2005, pp. 1195–1206. 

[28]. S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and 
T. He, ATPC: adaptive transmission power control for 
wireless sensor networks, in Proceedings of the 4th 

ACM Conference on Embedded Networked Sensor 
Systems (SenSys’09), 2006, pp. 223– 236. 

[29]. Albert W. Marshall, Ingram Olkin, and Barry Arnold, 
Inequalities: Theory of Majorization and its 

Applications, Springer Science & Business Media, 
2010. 

[30]. Farhad Meshkati, H. Vincent Poor, Stuart C. 
Schwartz, and Radu V. Balan, Energy-efficient power 
and rate control with qos constraints: a game-theoretic 
approach, in Proceedings of the International 
Conference on Wireless Communications and Mobile 
Computing, 2006, pp. 1435–1440. 

[31]. Scott Moeller, Avinash Sridharan, Bhaskar 
Krishnamachari, and Omprakash Gnawali. Routing 
without routes: The backpressure collection protocol, 
in Proceedings of the 9th ACM/IEEE International 
Conference on Information Processing in Sensor 
Networks, 2010, pp. 279–290. 

[32]. D. Monderer and L. S. Shapley, Potential games, 
Games and Economic Behavior, 14, 1996,  
pp. 124–143. 

[33]. Roger B Myerson, Game theory: analysis of conflict, 
Harvard University, 1991. 

[34]. A. Nahir, A. Orda, and A. Freund, Topology design 
and control: A game-theoretic perspective, in 
Proceedings of the IEEE INFOCOM Conference, 
2008, pp. 1620–1628. 

[35]. J.F. Nash Jr., The bargaining problem, Econometrica: 
Journal of the Econometric Society, 1950,  
pp. 155–162. 

[36]. James O. Neel, Jeffrey H. Reed, Robert P. Gilles, et 
al., Convergence of cognitive radio networks, in 
Proceedings of the Wireless Communications and 
Networking Conference (WCNC), Vol. 4, 2004,  
pp. 2250–2255. 

[37]. Noam Nisan, Tim Roughgarden, Eva Tardos, and 
Vijay V. Vazirani, Algorithmic Game Theory, Vol. 1, 
Cambridge University Press, Cambridge, 2007. 

[38]. Christos H Papadimitriou, On the complexity of the 
parity argument and other inefficient proofs of 
existence, Journal of Computer and System Sciences, 
48, 3, 1994, pp. 498–532. 

[39]. D. Son, B. Krishnamachari, and J. Heidemann, 
Experimental study of the effects of transmission 
power control and blacklisting in wireless sensor 
networks, in Proceedings of the 1st Annual IEEE 
Communications Society Conference on Sensor and 
Ad Hoc Communications and Networks (SECON ’04), 
2004, pp. 289–298. 

[40]. Dongjin Son, Bhaskar Krishnamachari, and John 
Heidemann, Experimental study of the effects of 
transmission power control and blacklisting in 
wireless sensor networks, in Proceedings of the 1st 
Annual IEEE Communications Society Conference on 
Sensor and Ad Hoc Communications and Networks   
(SECON ’04), 2004, pp. 289–298. 

[41]. Yang Song, Starsky H. Y. Wong, and Kang-Won Lee, 
A game theoretical approach to gateway selections in 
multi-domain wireless networks, Gateways, 1, 2011, 
S1. 

[42]. Evangelos D. Spyrou and Dimitrios K. Mitrakos, 
Approximating NASH equilibrium uniqueness of 
power control in practical WSNs, International 
Journal of Computer Networks & Communications 
(IJCNC) Vol. 7, No. 6, November 2015. 

[43]. Evangelos D. Spyrou and Dimitrios K. Mitrakos, On 
the homogeneous transmission power under the sinr 
model, in Proceedings of the 4th International 
Conference on Telecommunications and Remote 
Sensin, (ICTRS’15), 2015. 

[44]. Evangelos D. Spyrou, Shusen Yang, and Dimitrios K. 
Mitrakos, Discrete strategy game-theoretic topology 
control in wireless sensor networks, in Proceedings of 



Sensors & Transducers, Vol. 212, Issue 5, May 2017, pp. 1-14 

 14

the 6th International Conference on Sensor Networks 
(SENSORNETS ’17), 2017. 

[45]. K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. 
Levis, The beta-factor: Improving bimodal wireless 
networks, in Proceedings of the 6th ACM Conference 
on Embedded Networked Sensor Systems (ACM 
SenSys), 2007. 

[46]. Qian Tan, Wei An, Yanni Han, Yanwei Liu, Song Ci, 
Fang-Ming Shao, and Hui Tang, Energy harvesting 
aware topology control with power adaptation in 
wireless sensor networks, Ad Hoc Networks, 27, 2015, 
pp. 44–56. 

[47]. George Tychogiorgos, Athanasios Gkelias, and Kin 
K. Leung, A new distributed optimization framework 
for hybrid ad-hoc networks, in Proceedings of the 
IEEE GLOBECOM Workshops (GC Wkshps), 2011, 
pp. 293–297. 

[48]. Takashi Ui, Discrete concavity for potential games, 
International Game Theory Review, 10, 01, 2008,  
pp. 137–143. 

[49]. J. Von Neumann, O. Morgenstern, A. Rubinstein, and 
H.W. Kuhn, Theory of Games and Economic 
Behavior, Princeton Univ. Pr., 2007. 

[50]. M. K. H. Yeung and Y. K. Kwok, A game theoretic 
approach to power aware wireless data access, IEEE 
Transactions on Mobile Computing, 2006, pp. 1057–
1073. 

[51]. J. Zhao and R. Govindan, Understanding packet 
delivery performance in dense wireless sensor 
networks, in Proceedings of the 1st International 
Conference on Embedded Networked Sensor Systems 
ACM SenSys, 2003, pp. 1–13. 
 

 

__________________ 
 

 

Published by International Frequency Sensor Association (IFSA) Publishing, S. L., 2017 
(http://www.sensorsportal.com). 

 
 
 
 
 
 
 
 

 

http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors_Vol_3.htm
http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors_Vol_3.htm
http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors_Vol_3.htm
http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors_Vol_3.htm
http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors_Vol_3.htm
http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors_Vol_3.htm

