156 research outputs found

    Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Get PDF
    This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe

    Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca2+-induced conformational changes in the regulatory domain of human cardiac troponin C

    Get PDF
    AbstractTroponin C (TnC), a calcium-binding protein of the thin filament of muscle, plays a regulatory role in skeletal and cardiac muscle contraction. NMR reveals a small conformational change in the cardiac regulatory N-terminal domain of TnC (cNTnC) on binding of Ca2+ such that the total exposed hydrophobic surface area increases very slightly from 3090 ± 86 Å2 for apo-cNTnC to 3108 ± 71 Å2 for Ca2+-cNTnC. Here, we show that measurement of solvent accessibility for backbone amide protons by means of solution-phase hydrogen/deuterium (H/D) exchange followed by pepsin digestion, high-performance liquid chromatography, and electrospray ionization high-field (9.4 T) Fourier transform Ion cyclotron resonance mass spectrometry is sufficiently sensitive to detect such small ligand binding-induced conformational changes of that protein. The extent of deuterium incorporation increases significantly on binding of Ca2+ for each of four proteolytic segments derived from pepsin digestion of the apo- and Ca2+-saturated forms of cNTnC. The present results demonstrate that H/D exchange monitored by mass spectrometry can be sufficiently sensitive to detect and identify even very small conformational changes in proteins, and should therefore be especially informative for proteins too large (or too insoluble or otherwise intractable) for NMR analysis

    Solution Structure and Dynamics of the I214V Mutant of the Rabbit Prion Protein

    Get PDF
    Background: The conformational conversion of the host-derived cellular prion protein (PrP C) into the disease-associated scrapie isoform (PrP Sc) is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs). Various single-point mutations in PrP C s could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrP C (RaPrP C) and various mutants would be of great help to understand the ability of RaPrP C to be resistant to TSE agents. Methodology/Principal Findings: We determined the solution structure of the I214V mutant of RaPrP C (91–228) and detected the backbone dynamics of its structured C-terminal domain (121–228). The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement. Conclusions/Significance: Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints fo

    Role of Polyubiquitin Chain Flexibility in the Catalytic Mechanism of Cullin–RING Ubiquitin Ligases

    No full text
    Cullin–RING ubiquitin ligases are a diverse family of ubiquitin ligases that catalyze the synthesis of K48-linked polyubiquitin (polyUb) chains on a variety of substrates, ultimately leading to their degradation by the proteasome. The cullin–RING enzyme scaffold processively attaches a Ub molecule to the distal end of a growing chain up to lengths of eight Ub monomers. However, the molecular mechanism governing how chains of increasing size are built using a scaffold of largely fixed dimensions is not clear. We developed coarse-grained molecular dynamics simulations to describe the dependence of kcat for cullin–RING ligases on the length and flexibility of the K48-linked polyUb chain attached to the substrate protein, key factors that determine the rate of subsequent Ub attachment to the chain, and therefore, the ensuing biological outcomes of ubiquitination. The results suggest that a number of regulatory mechanisms may lead to variations in the rate of chain elongation for different cullin–RING ligases. Specifically, modulation of the distance between the target lysine and the phosphodegron sequence of the substrate, the distance between the substrate lysine and the active site cysteine of the Ub conjugation enzyme (E2) bound to the cullin–RING scaffold, and flexibility of the bound E2 can lead to significant differences in the processing of K48-linked chains on substrates, potentially leading to differences in biological outcomes

    Dynamics-Derived Insights into Complex Formation between the CXCL8 Monomer and CXCR1 N-Terminal Domain: An NMR Study

    No full text
    Interleukin-8 (CXCL8), a potent neutrophil-activating chemokine, exerts its function by activating the CXCR1 receptor that belongs to class A G protein-coupled receptors (GPCRs). Receptor activation involves interactions between the CXCL8 N-terminal loop and CXCR1 N-terminal domain (N-domain) residues (Site-I) and between the CXCL8 N-terminal and CXCR1 extracellular/transmembrane residues (Site-II). CXCL8 exists in equilibrium between monomers and dimers, and it is known that the monomer binds CXCR1 with much higher affinity and that Site-I interactions are largely responsible for the differences in monomer vs. dimer affinity. Here, using backbone 15N-relaxation nuclear magnetic resonance (NMR) data, we characterized the dynamic properties of the CXCL8 monomer and the CXCR1 N-domain in the free and bound states. The main chain of CXCL8 appears largely rigid on the picosecond time scale as evident from high order parameters (S2). However, on average, S2 are higher in the bound state. Interestingly, several residues show millisecond-microsecond (ms-μs) dynamics only in the bound state. The CXCR1 N-domain is unstructured in the free state but structured with significant dynamics in the bound state. Isothermal titration calorimetry (ITC) data indicate that both enthalpic and entropic factors contribute to affinity, suggesting that increased slow dynamics in the bound state contribute to affinity. In sum, our data indicate a critical and complex role for dynamics in driving CXCL8 monomer-CXCR1 Site-I interactions

    Molecular Basis for Impaired DNA Damage Response Function Associated with the RAP80 ΔE81 Defect

    No full text
    Signal transduction within the DNA damage response is driven by the flux of protein-protein interaction cascades that ultimately recruit repair complexes to sites of damage. The protein RAP80 plays a central role in the damage response by targeting BRCA1/BRCA2 tumor suppressors to DNA damage foci through multivalent binding of Lys-63-linked polyubiquitin chains. Mutations within the high penetrance BRCA1/BRCA2 genes account for ∼20% of familial breast cancers. The genetic basis for the remaining cancers remains unknown, but may involve defects in binding partners for BRCA1 and BRCA2 that lead to impaired targeting to foci and a concomitant role in the pathogenesis of cancer. Recently, an in-frame deletion mutation (ΔE81) in a conserved region from the first ubiquitin interaction motif of RAP80 has been linked to an increase in chromosomal abnormalities. Using NMR spectroscopy, we demonstrate that the N-cap motif within the α-helix of the first ubiquitin interaction motif from ΔE81 undergoes a structural frameshift that leads to abolishment of multivalent binding of polyubiquitin chains. Loss of this single glutamate residue disrupts favorable electrostatic interactions between RAP80 and ubiquitin, establishing a plausible molecular basis for a potential predisposition to cancer unrelated to mutations within BRCA1/BRCA2 genes
    corecore