46 research outputs found

    A review of life cycle assessment: agroproducts modeling

    Get PDF
    Life Cycle Assessment is a trendsetter methodology in order to assess environmental and social impacts associated to an entire productive cycle in a vision “Cradle to Grave” or in a new one “Cradle to Cradle”, taking in count every single component of these impacts or almost all. In particular, agroproductive chains have unique components and considerations, which need to be counted in the assessment process.  These have been commented in the text and some calculation considerations were explained

    An LCA model to assess the environmental improvement of new farming systems

    Get PDF
    The environmental impact of new farming practices is compared with that of conventional one. The approach is that of LCA and the assessing procedure is based on two cross-interaction matrices relating system inputs with emissions and impacts. With the aim to allow its application also at farm level by non-expert users, the procedure has been implemented in software that facilitate it use. Furthermore, the definition of standard impact values and a total environmental effects index make it easier to compare different systems and to evaluate the improvement achieved with a new agricultural practice. As an example, the model has been applied to compare the environmental effects generated in the production of sunflower using ecological, integrated and conventional farming techniques. Both Ecological and Integrated technique present lower impact than conventional even if for some specific impact the results are inverted. The application highlights the importance of the functional unit: when environmental effects are referred to the unit of production (ton), the total impact of the integrated technique is higher than the conventional one. Energy and CO2 efficiency are also computed, which are resulted to be good indicators of the overall environmental impact of a cultivation syste

    Performance of a driven hitch-cart for draft animal power under different power take-off torque and ballast levels condition

    Get PDF
    The performance of a two-wheel driven hitch-cart designed for draft animal power has been assessed. The cart fits a three-point linkage system and a ground-driven power take-off (PTO). Conventional pneumatic tires and metallic wheels have been tested in dedicated draft trials with increasing torque applied to PTO (7.0 to 70 Nm) at two ballast levels (100 and 200 kg). Draft force varies from a minimum of about 760 N (pneumatic tires and the lowest ballast), up to about 4480 N (metallic wheels and the highest ballast), with a linear increase as a function of the PTO applied torque. In term of global efficiency the better performances was achieved in different conditions. The metallic wheels deliver greater power to the PTO than pneumatic tires. Furthermore, they had global efficiencies higher than pneumatic for high power requirements, while the pneumatics perform better when the required power is low. Slippage rises as a function of increasing torque and decreasing ballast, with metallic wheels allowing delivery of greater PTO torque at the same slippage extent. The performances of the cart are consistent with the use of implements designed for small tractors

    Energetic and economic viability of olive stone recovery as a renewable energy source: a Southern Italy case study

    Get PDF
    The recovery of olive stones for biofuel is becoming increasingly widespread in olive milling plants. In this study we look at the economic and energetic benefits of using a de-stoner machine in a small-to-medium sized oil milling plant. The performance of the olive stone recovery system was evaluated over a full olive oil production season. The energetic viability of the de-stoner was assessed using a Life Cycle Assessment approach, and the break-even point was achieved when about 56 tons of olives had been processed, which is less than the annual production of the mill in question. Similarly, in economic terms, the machine covered its costs after about a quarter of its technical life

    A new method for Espresso Coffee brewing: Caffè Firenze

    Get PDF
    Espresso coffee is the most popular choice for Italian coffee consumers. It has been estimated that every day, in the world, over of 50 million of Espresso cups are taken. As a consequence of this success, a large number of devices to make Espresso have been developed. In this scenario, a new device has been recently developed and patented (Eu. Patent 06 023 798.9; US 2010/0034942 A1). This brew method, named “Caffè Firenze”, uses a sealed extraction chamber, where water and gas provides pressure higher than the other extraction methods. Three main parts compose the apparatus: the gas source, the extraction chamber and the heat exchanger. The gas source provides the pressured gas required to raise the pressure of the system. The extraction chamber is made with chrome-brass and accessorized with two heating glow plugs. Many are the factors affecting Espresso quality: it is known that, coffee type, roasting conditions and degree, grinding and storage strongly affect the obtained brew. Also, several studies have been carried out on the effect of the setting parameters on quality, for example water pressure, water temperature, and brew time. Among the characteristics that determine Espresso quality, the main attribute for the visual analysis is, without doubts, the foam, also called “crema”. Indeed, height, aspect, and persistency of foam are features much appreciates by consumers. Two distinguish Espresso foam parameters are the persistency and foam index. Equipping a commercial bar machine with the new designed extraction chamber makes feasible the comparison between the traditional way to brew Espresso and the new device. The comparison was made holding the previous mentioned conditions, and differences were evaluated in terms of physical parameters and aromatic profiles. Caffè Firenze shows pronounced differences compared with traditional Espresso in term of foam-related parameters. Also, the new extraction device produces coffees with higher values of body-related parameters, such density and viscosity. The two kinds of Espressos are perceived different at visual analysis and taste by a panel test

    Agronomical evaluation and chemical characterization of Linum usitatissimum L. as oilseed crop for bio-based products in two environments of Central and Northern Italy

    Get PDF
    In the recent years, new perspectives for linseed (Linum usitatissimum L.) are open as renewable raw material for bio-based products (Bb), due to its oil composition, and the interesting amounts of coproducts (lignocellulosic biomass). Therefore, the possibility to introduce linseed crop in two environments of central and northern Italy, traditionally devoted to cereal cultivation, has been evaluated. Twoyears field trials were carried out in the coastal plain of Pisa (Tuscany region) and in the Po valley (Bologna, Emilia Romagna region), comparing two linseed varieties (Sideral and Buenos Aires). Agronomical evaluation (yield and yield components), seed and oil characterization (oil, protein content, and fatty acid composition), together with carbon (C) and nitrogen (N) content of the residual lignocellulosic biomass were investigated. The two varieties, grown as autumn crop, showed a different percentage of plant survival at the end of winter, with Sideral most resistant to cold. The achieved results showed significant influence of cultivar, location and growing season on yield and yield components, as well as on chemical biomass composition. In particular, Sideral appeared to be the most suitable variety for tested environments, since higher seed yield (3.05 t ha–1 as mean value over years and locations) and above-ground biomass (6.98 t ha–1 as mean value over years and locations) were recorded in comparison with those detected for Buenos Aires (1.93 and 4.48 t ha–1 of seed production and lignocellulosic biomass, respectively). Interestingly, in the northern area, during the 1st year, Buenos Aires was the most productive, despite its low plant survival at the end of winter, which determined a strong reduction in plant density and size. In such conditions, the plants produced a larger number of capsules and, consequently, high seed yield (3.18 t ha–1). Relevant differences were also observed between the two years, due to the variability of climatic characteristics (temperature levels, and moisture regimes). All these findings confirmed as, in linseed, yield and yield components are quantitatively inherited and influenced by both genotype and environment (location and climate). Varietal and environmental effects were also recorded for oil content and yield, and, generally, good oil percentages, for both genotypes, were found (ranging from 44 to 49% on dry matter basis). Oil from the two varieties was characterized by a stable proportion of polyunsaturated fatty acids with a high content of alpha-linolenic acid (more than 57%), that makes this oil suitable to be used in paints, resins, varnishes, linoleum, polymers and oleochemicals. Finally, our results pointed out as above- and below-ground biomasses, were different in terms of quantity, and chemical characteristics (N, C and C/N ratio). Interesting amounts of N and C could return into the soil by crop residues (stem portions and roots), thus underling the possibility to maintain and/or increase the soil organic matter pool

    Environmental impact assessment of three packages for high-quality extra-virgin olive oil

    Get PDF
    Life cycle assessments of food packaging technologies have shown that they contribute considerably to the environmental impact of products. This study analyses the life cycle impact of three packaging solutions for high-quality extra-virgin olive oil. Two of them are widely used solutions, namely tin plated cans and dimmed glass bottles. The third one is a stainless steel bottle, which has been proposed recently. The analysis was performed with a cradle to grave approach and it takes into account raw materials extraction and processing, packaging production processes and several end-of-life scenarios. Impacts due to distribution were considered separately to assess uncertainties due to distribution distances. The results show that, for same sizes, dimmed glass bottles have the lowest overall impact value for all the six indicators selected except for ozone layer depletion, whereas stainless steel bottles have the highest impact values for all the other indicators. A sensitivity analysis was performed to determine how impact varies in function of distance and packaging weight. It shows that it is possible to set a breakeven point over which the impact of glass overcomes the one of the other packaging systems. Packaging shows a significant contribution to impact of bottled oil. For small packaging, such as a 0.100 L stainless steel bottle, this contribution can be as relevant as 60% of the overall global warming potential
    corecore