411 research outputs found
Biphasic pulses enhance bleomycin efficacy in a spontaneous canine genital tumor model of chemoresistance: Sticker sarcoma
Sticker's sarcoma (also known as transmissible venereal tumor) is a horizontally transmitted neoplasm of the dog, that is passed with coitus. It is a locally aggressive tumor with a low tendency to metastatic spread. The most common locations are the genitals, the nose, the perianal area. Standard treatment consists with chemotherapy with vincristine, however other therapies such as, cryotherapy, immunotherapy or, in selected cases, radiation therapy, have been reported. In this article we describe the outcome of a small cohort of canine patients, with chemotherapy resistant transmissible venereal tumor (TVT), treated with bleomycin selectively driven by trains of biphasic pulses (electrochemotherapy). Three canine patients, with refractory TVT, entered the study and received two sessions of ECT under sedation. The pets had local injection of bleomycin at the concentration of 1.5 mg/ml and five minutes after the chemotherapy, trains of 8 biphasic electric pulses lasting 50 + 50 μs each, with 1 ms interpulse intervals, were delivered by means of modified caliper or, for difficult districts, through paired needle electrode. All the patients responded to the treatment and are still in remission at different times. Electrochemotherapy appears as a safe and efficacious modality for the treatment of TVT and warrants further investigations
Adjuvant electrochemotherapy in veterinary patients: a model for the planning of future therapies in humans
The treatment of soft tissue tumors needs the coordinated adoption of surgery with radiation therapy and eventually, chemotherapy. The radiation therapy (delivered with a linear accelerator) can be preoperative, intraoperative, or postoperative. In selected patients adjuvant brachytherapy can be adopted. The goal of these associations is to achieve tumor control while maximally preserving the normal tissues from side effects. Unfortunately, the occurrence of local and distant complications is still elevated. Electrochemotherapy is a novel technique that combines the administration of anticancer agents to the application of permeabilizing pulses in order to increase the uptake of antitumor molecules. While its use in humans is still confined to the treatment of cutaneous neoplasms or the palliation of skin tumor metastases, in veterinary oncology this approach is rapidly becoming a primary treatment. This review summarizes the recent progresses in preclinical oncology and their possible transfer to humans
Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy
The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism
Book review of: "Clinical aspects of electroporation" by Stephen T Kee, Julie Gehl, Edward W Lee
This article is a review of the book: Clinical aspects of electroporation, by Stephen T. Kee, Julie Gehl, Edward W Lee, which is published by Springer Press. Basic information that should be helpful in deciding whether to read the book and whether to use it as a reference book is presented. This includes an introduction, a description of all the sections of the book, and a comparison with recently published books on the topic
RIP1-HAT1-SirT complex identification and targeting in treatment and prevention of cancer
Purpose: Alteration in cell death is a hallmark of cancer. A functional role regulating survival, apoptosis, and necroptosis has been attributed to RIP1/3 complexes.Experimental Design: We have investigated the role of RIP1 and the effects of MC2494 in cell death induction, using different methods as flow cytometry, transcriptome analysis, immunoprecipitation, enzymatic assays, transfections, mutagenesis, and in vivo studies with different mice models.Results: Here, we show that RIP1 is highly expressed in cancer, and we define a novel RIP1/3-SIRT1/2-HAT1/4 complex. Mass spectrometry identified five acetylations in the kinase and death domain of RIP1. The novel characterized pan-SIRT inhibitor, MC2494, increases RIP1 acetylation at two additional sites in the death domain. Mutagenesis of the acetylated lysine decreases RIP1-dependent cell death, suggesting a role for acetylation of the RIP1 complex in cell death modulation. Accordingly, MC2494 displays tumor-selective potential in vitro, in leukemic blasts ex vivo, and in vivo in both xenograft and allograft cancer models. Mechanistically, MC2494 induces bona fide tumor-restricted acetylated RIP1/caspase-8-mediated apoptosis. Excitingly, MC2494 displays tumor-preventive activity by blocking 7,12-dimethylbenz(α)anthracene-induced mammary gland hyperproliferation in vivoConclusions: These preventive features might prove useful in patients who may benefit from a recurrence-preventive approach with low toxicity during follow-up phases and in cases of established cancer predisposition. Thus, targeting the newly identified RIP1 complex may represent an attractive novel paradigm in cancer treatment and prevention
Electrochemotherapy with cisplatin enhances local control after surgical ablation of fibrosarcoma in cats: an approach to improve the therapeutic index of highly toxic chemotherapy drugs
<p>Abstract</p> <p>Background</p> <p>Cancer is one of the most difficult current health challenges, being responsible for millions of deaths yearly. Systemic chemotherapy is the most common therapeutic approach, and the prevailing orientation calls for the administration of the maximum tolerated dose; however, considerable limitations exist including toxicities to healthy tissues and low achievable drug concentrations at tumor sites. Electrochemotherapy (ECT) is a tumor treatment that combines the systemic or local delivery of anticancer drugs with the application of permeabilizing electric pulses. In this article we evaluate the capability of ECT to allow the use of cisplatin despite its high toxicity in a spontaneous feline model of soft tissue sarcoma.</p> <p>Methods</p> <p>A cohort of sixty-four cats with incompletely excised sarcomas were treated with cisplatin-based adjuvant ECT and monitored for side effects. Their response was compared to that of fourteen cats treated with surgery alone.</p> <p>Results</p> <p>The toxicities were minimal and mostly treated symptomatically. ECT resulted in increased local control (median not reached at the time of writing) with a mean time to recurrence of 666 days versus 180 of controls.</p> <p>Conclusions</p> <p>We conclude that ECT is a safe and efficacious therapy for solid tumors; its use may be considered as part of strategies for the reintroduction of drugs with a narrow therapeutic index in the clinical protocols.</p
Rethinking therapeutic strategies in cancer: wars, fields, anomalies and monsters
This article argues that the excessive focus on cancer as an insidious living defect that needs to be destroyed has obscured the fact that cancer develops inside human beings. Therefore, in order to contribute to debates about new cancer therapies, we argue that it is important to gain a broader understanding of what cancer is and how it might be otherwise. First, in order to reframe the debate, we utilize Pierre Bourdieu’s field analysis in order to gain a stronger understanding of the structure of the (sub)field of cancer research. In doing so, we are able to see that those in a dominant position in the field, with high levels of scientific capital at their disposal, are in the strongest position to determine the type of research that is carried out and, more significantly, how cancer is perceived. Field analysis enables us to gain a greater understanding of the complex interplay between the field of science (and, more specifically, the subfield of cancer research) and broader sources of power. Second, we draw attention to new possible ways of understanding cancer in its evolutionary context. One of the problems facing cancer research is the narrow time frame within which cancer is perceived: the lives of cancer cells are considered from the moment the cells initially change. In contrast, the approach put forward here requires a different way of thinking: we take a longer view and consider cancer as a living entity, with cancer perceived as anomalous rather than abnormal. Third, we theorize the possibility of therapeutic strategies that might involve the redirection (rather than the eradication) of cancer cells. This approach also necessitates new ways of perceiving cancer
Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft
<p>Abstract</p> <p>Background</p> <p>Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139) as well as the efficacy of combination chemotherapy in human melanoma xenografts.</p> <p>Methods</p> <p>Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP) followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy.</p> <p>Results</p> <p>The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50%) accompanied by a marked tumor re-growth delay (TRD, about 20 days). The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days.</p> <p>Conclusions</p> <p>These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells <it>in vivo </it>and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.</p
Tumor Suppressors and Cell-Cycle Proteins in Lung Cancer
The cell cycle is the cascade of events that allows a growing cell to duplicate all its components and split into two daughter cells. Cell cycle progression is mediated by the activation of a highly conserved family of protein kinases, the cyclin-dependent kinases (CDKs). CDKs are also regulated by related proteins called cdk inhibitors grouped into two families: the INK4 inhibitors (p16, p15, p19, and p18) and the Cip/Kip inhibitors (p21, p27, and p53). Several studies report the importance of cell-cycle proteins in the pathogenesis and the prognosis of lung cancer. This paper will review the most recent data from the literature about the regulation of cell cycle. Finally, based essentially on the data generated in our laboratory, the expression, the diagnostic, and prognostic significance of cell-cycle molecules in lung cancer will be examined
Piroxicam and intracavitary platinum-based chemotherapy for the treatment of advanced mesothelioma in pets: preliminary observations
Malignant Mesothelioma is an uncommon and very aggressive tumor that accounts for 1% of all the deaths secondary to malignancy in humans. Interestingly, this neoplasm has been occasionally described in companion animals as well. Aim of this study was the preclinical evaluation of the combination of piroxicam with platinum-based intracavitary chemotherapy in pets. Three companion animals have been treated in a three years period with this combination. Diagnosis was obtained by ultrasonographic exam of the body cavities that evidenced thickening of the mesothelium. A surgical biopsy further substantiated the diagnosis. After drainage of the malignant effusion from the affected cavity, the patients received four cycles of intracavitary CDDP at the dose of 50 mg/m2 every three weeks if dogs or four cycles of intracavitary carboplatin at the dose of 180 mg/m2 (every 3 weeks) if cats, coupled with daily administration of piroxicam at the dose of 0.3 mg/kg. The therapy was able to arrest the effusion in all patients for variable remission times: one dog is still in remission after 3 years, one dog died of progressive disease after 8 months and one cat died due to progressive neoplastic growth after six months, when the patient developed a mesothelial cuirass. The combination showed remarkable efficacy at controlling the malignant effusion secondary to MM in our patients and warrants further investigations
- …
