37 research outputs found

    Combining wireless and visual tracking for an indoor environment

    Get PDF
    There has been a lot of research done towards both camera and Wi-Fi tracking respectively, both these techniques have their benefits and drawbacks. By combining these technologies it is possible to eliminate their respective weaknesses, to increase the possibilities of the system as a whole. This is accomplished by fusing the sensor data from Wi-Fi and camera before inserting it in a particle filter. This will result in a more accurate and robust localization system

    Improving air filter efficiency as a strategy to reduce children’s exposure to traffic related air pollutants in energy-efficient classrooms

    Get PDF
    This study was organised to quantify the effect of upgrading the filter efficiency in balance ventilation systems on indoor exposure to traffic-related air pollution, in 4 primary school classrooms. The standard air filters (EU F7) were compared with more efficient EU F9, and with F7+active carbon filters. Particulate matter (PM), ultrafine particles (UFP), black carbon (BC), PM2.5, organic/elemental carbon in PM2.5 (EC/OC), and NO2 were quantified, air tightness and air supply rates were assessed and pupils’ indoor comfort was surveyed. Analysis of indoor air as function of outdoor air and filter type indicated a significant but small reduction of indoor levels when upgrading the filter, except for PM10, TSP and UFP. The indoor comfort survey indicated a small but significant and positive effect as well

    The future of passive techniques in air change rate measurement

    Get PDF
    Ventilation is critical in interpreting indoor air quality (IAQ), but only few IAQ assessments report ventilation rates; even when they do, the measurement method is often not fully de-scribed. Most ventilation assessments use a tracer gas test (TGT) approach to measure total air change rate, which consists in marking the indoor air with an easily identifiable gas (tracer) and then inferring the air exchange rate by monitoring the tracer’s injection rate and concen-tration (Persily, 2016). For this monitoring, two sampling options can be used: active sam-plers, costly and complex, or passive samplers (which work by absorption/adsorption without electricity use), overall more advantageous: cheaper, smaller, lighter, simpler and silent. Af-fordable passive samplers are commercialized by a range of companies and are already widely used in IAQ studies to analyse the presence of several gaseous pollutants (Stranger et al., 2008). However, currently employed TGTs in IAQ assessments are either active or not con-ceived to be executed together with common IAQ analysis, providing ventilation rates in a different time-scale than the pollutant concentrations. Thus, this paper proposes a new ap-proach for the TGT method, using as tracer a substance that can be co-captured and co-analysed using commercial passive samplers commonly used in IAQ studies

    Proposing a new tracer gas for future field applications of passive tracer gas tests for air change rate measurement

    Get PDF
    This paper describes the ongoing development of a new adaptation of the traditional tracer gas test (TGT) used for total air change rates (ACH) measurement. This adapted TGT, based on constant tracer injection, is intended for use in large-scale IAQ assessments and employs an alternative tracer gas that is more adequate than the currently employed SF6 and perfluorocarbons, and that can be co-captured and coanalysed with commonly assessed VOCs by commercial passive IAQ-sampling. Via literature study and lab experiments, decane-D22 was found to be a suitable tracer substance. A passive source of decane- D22 was developed and optimized in lab, providing stable and repeatable emission rates under standard temperature, while unaffected by varying RH and ACH. The effect of the liquid solvent level over the source emission rate was only barely noticeable, but a range of adequate solvent level is suggested nevertheless. The selected tracer was also shown not to adhere/absorb significantly to surfaces. Additionally, a consistent exponential curve was derived for determining the source emission rate from the room temperature. Field applications of this new TGT adaptation are ongoing and will be published elsewhere shortly.publishedVersio

    Feature-specific attention allocation modulates the generalization of recently acquired likes and dislikes

    Get PDF
    We examined whether the generalization of recently acquired likes and dislikes depends on feature-specific attention allocation. Likes and dislikes were established by means of an evaluative-conditioning procedure in which participants were presented with several exemplars of two subordinate categories (e.g., young men vs. old women). Whereas exemplars of one category were consistently paired with negative stimuli, exemplars of the second category were consistently paired with positive stimuli. In addition, we manipulated feature-specific attention allocation for specific stimulus dimensions (e.g., gender vs. age), either during (Experiments 1 and 2) or before the acquisition phase of the experiment (Experiment 3). Both direct and indirect attitude measures revealed a clear impact of this manipulation on attitude generalization. More specifically, only generalization stimuli that were similar to the CSs in terms of the stimulus dimension that was selectively attended to were evaluated in a manner that was congruent with the acquired liking of those CSs

    INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma

    Get PDF
    BACKGROUND: Depatuxizumab mafodotin (Depatux-M) is a tumor-specific antibody-drug conjugate consisting of an antibody (ABT-806) directed against activated epidermal growth factor receptor (EGFR) and the toxin monomethylauristatin-F. We investigated Depatux-M in combination with temozolomide or as a single agent in a randomized controlled phase II trial in recurrent EGFR amplified glioblastoma. METHODS: Eligible were patients with centrally confirmed EGFR amplified glioblastoma at first recurrence after chemo-irradiation with temozolomide. Patients were randomized to either Depatux-M 1.25 mg/kg every 2 weeks intravenously, or this treatment combined with temozolomide 150-200 mg/m2 day 1-5 every 4 weeks, or either lomustine or temozolomide. The primary endpoint of the study was overall survival. RESULTS: Two hundred sixty patients were randomized. In the primary efficacy analysis with 199 events (median follow-up 15.0 mo), the hazard ratio (HR) for the combination arm compared with the control arm was 0.71 (95% CI = 0.50, 1.02; P = 0.062). The efficacy of Depatux-M monotherapy was comparable to that of the control arm (HR = 1.04, 95% CI = 0.73, 1.48; P = 0.83). The most frequent toxicity in Depatux-M treated patients was a reversible corneal epitheliopathy, occurring as grades 3-4 adverse events in 25-30% of patients. In the long-term follow-up analysis with median follow-up of 28.7 months, the HR for the comparison of the combination arm versus the control arm was 0.66 (95% CI = 0.48, 0.93). CONCLUSION: This trial suggests a possible role for the use of Depatux-M in combination with temozolomide in EGFR amplified recurrent glioblastoma, especially in patients relapsing well after the end of first-line adjuvant temozolomide treatment. (NCT02343406)
    corecore