526 research outputs found
Changing Traditions: Supervision, Co-Teaching, and Lessons Learned in a Professional Development School Partnership
Considering how long societies have been educating their youth, the history of teacher education is relatively brief. The first efforts to provide systematic education for teachers with some kind of practical experience occurred in Rheims, France, in the late 17th century when Jean Baptiste De La Salle opened the first normal school
Bayesian averaging for ground state masses of atomic nuclei in a Machine Learning approach
We present global predictions of the ground state mass of atomic nuclei based
on a novel Machine Learning (ML) algorithm. We combine precision nuclear
experimental measurements together with theoretical predictions of unmeasured
nuclei. This hybrid data set is used to train a probabilistic neural network.
In addition to training on this data, a physics-based loss function is employed
to help refine the solutions. The resultant Bayesian averaged predictions have
excellent performance compared to the testing set and come with well-quantified
uncertainties which are critical for contemporary scientific applications. We
assess extrapolations of the model's predictions and estimate the growth of
uncertainties in the region far from measurements.Comment: 15 pages, 10 figures, comments welcom
Manifolds with small Dirac eigenvalues are nilmanifolds
Consider the class of n-dimensional Riemannian spin manifolds with bounded
sectional curvatures and diameter, and almost non-negative scalar curvature.
Let r=1 if n=2,3 and r=2^{[n/2]-1}+1 if n\geq 4. We show that if the square of
the Dirac operator on such a manifold has small eigenvalues, then the
manifold is diffeomorphic to a nilmanifold and has trivial spin structure.
Equivalently, if M is not a nilmanifold or if M is a nilmanifold with a
non-trivial spin structure, then there exists a uniform lower bound on the r-th
eigenvalue of the square of the Dirac operator. If a manifold with almost
nonnegative scalar curvature has one small Dirac eigenvalue, and if the volume
is not too small, then we show that the metric is close to a Ricci-flat metric
on M with a parallel spinor. In dimension 4 this implies that M is either a
torus or a K3-surface
Polarization and relaxation of radon
Investigations of the polarization and relaxation of Rn by spin
exchange with laser optically pumped rubidium are reported. On the order of one
million atoms per shot were collected in coated and uncoated glass cells.
Gamma-ray anisotropies were measured as a signal of the alignment (second order
moment of the polarization) resulting from the combination of polarization and
quadrupole relaxation at the cell walls. The temperature dependence over the
range 130C to 220C shows the anisotropies increasing with
increasing temperature as the ratio of the spin exchange polarization rate to
the wall relaxation rate increases faster than the rubidium polarization
decreases. Polarization relaxation rates for coated and uncoated cells are
presented. In addition, improved limits on the multipole mixing ratios of some
of the main gamma-ray transitions have been extracted. These results are
promising for electric dipole moment measurements of octupole-deformed
Rn and other isotopes, provided sufficient quantities of the rare
isotopes can be produced.Comment: 4 pages, 4 figure
A validation of Amazon Mechanical Turk for the collection of acceptability judgments in linguistic theory
Amazon’s Mechanical Turk (AMT) is a Web application that provides instant access to thousands of potential participants for survey-based psychology experiments, such as the acceptability judgment task used extensively in syntactic theory. Because AMT is a Web-based system, syntacticians may worry that the move out of the experimenter-controlled environment of the laboratory and onto the user-controlled environment of AMT could adversely affect the quality of the judgment data collected. This article reports a quantitative comparison of two identical acceptability judgment experiments, each with 176 participants (352 total): one conducted in the laboratory, and one conducted on AMT. Crucial indicators of data quality—such as participant rejection rates, statistical power, and the shape of the distributions of the judgments for each sentence type—are compared between the two samples. The results suggest that aside from slightly higher participant rejection rates, AMT data are almost indistinguishable from laboratory data
Intratumoral Gold Nanoparticle-Enhanced CT Imaging: An in Vivo Investigation of Biodistribution and Retention
This study aims to evaluate the in vivo distribution of Gold Nanoparticles (GNPs) at different time points after intratumoral (IT) injection, exploiting their properties as contrast agents for Computed Tomography (CT). GNPs approximately 40 nm in diameter were synthesized with a surface plasmon peak at ~530 nm, capped with Bovine Serum Albumin (BSA) to improve colloidal stability, and characterized with standard methods. CT phantom imaging was performed to quantify X-ray attenuation as a function of GNP concentration and surface functionalization and to determine the appropriate particle dose for in vivo studies. Concentrated GNPs were intratumorally (IT) injected into Lewis Lung Carcinoma (LLC) solid tumors grown on the right flank of 6-week old female C57BL/6 mice. Ten days post-injection, follow up CT imaging was performed to assess the distribution and retention of the particles in the tumor. Using the CT attenuation quantification, images for each timepoint were segmented, and 3D volumes rendered, to conduct biodistribution analyses. The successful retention and permanence of the GNPs into the solid tumor after ten days suggests the significance of GNPs as a potential theranostic agent
Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions
The four-subunit Negative Elongation Factor (NELF) is a major regulator of RNA Polymerase II (Pol II) pausing. The subunit NELF-E contains a conserved RNA Recognition Motif (RRM) and is proposed to facilitate Poll II pausing through its association with nascent transcribed RNA. However, conflicting ideas have emerged for the function of its RNA binding activity. Here, we use in vitro selection strategies and quantitative biochemistry to identify and characterize the consensus NELF-E binding element (NBE) that is required for sequence specific RNA recognition (NBE: CUGAGGA(U) for Drosophila). An NBE-like element is present within the loop region of the transactivation-response element (TAR) of HIV-1 RNA, a known regulatory target of human NELF-E. The NBE is required for high affinity binding, as opposed to the lower stem of TAR, as previously claimed. We also identify a non-conserved region within the RRM that contributes to the RNA recognition of Drosophila NELF-E. To understand the broader functional relevance of NBEs, we analyzed promoter-proximal regions genome-wide in Drosophila and show that the NBE is enriched +20 to +30 nucleotides downstream of the transcription start site. Consistent with the role of NELF in pausing, we observe a significant increase in NBEs among paused genes compared to non-paused genes. In addition to these observations, SELEX with nuclear run-on RNA enrich for NBE-like sequences. Together, these results describe the RNA binding behavior of NELF-E and supports a biological role for NELF-E in promoter-proximal pausing of both HIV-1 and cellular genes
- …