5 research outputs found

    Structural Determinants and Their Role in Cyanobacterial Morphogenesis

    Get PDF
    Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth

    Two novel heteropolymer‐forming proteins maintain the multicellular shape of the cyanobacterium Anabaena sp. PCC 7120

    Get PDF
    Polymerizing and filament-forming proteins are instrumental for numerous cellular processes such as cell division and growth. Their function in stabilization and localization of protein complexes and replicons is achieved by a filamentous structure. Known filamentous proteins assemble into homopolymers consisting of single subunits – for example, MreB and FtsZ in bacteria – or heteropolymers that are composed of two subunits, for example, keratin and α/ÎČ tubulin in eukaryotes. Here, we describe two novel coiled-coil-rich proteins (CCRPs) in the filament-forming cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena) that assemble into a heteropolymer and function in the maintenance of the Anabaena multicellular shape (termed trichome). The two CCRPs – Alr4504 and Alr4505 (named ZicK and ZacK) – are strictly interdependent for the assembly of protein filaments in vivo and polymerize nucleotide independently in vitro, similar to known intermediate filament (IF) proteins. A ΔzicKΔzacK double mutant is characterized by a zigzagged cell arrangement and hence a loss of the typical linear Anabaena trichome shape. ZicK and ZacK interact with themselves, with each other, with the elongasome protein MreB, the septal junction protein SepJ and the divisome associate septal protein SepI. Our results suggest that ZicK and ZacK function in cooperation with SepJ and MreB to stabilize the Anabaena trichome and are likely essential for the manifestation of the multicellular shape in Anabaena. Our study reveals the presence of filament-forming IF-like proteins whose function is achieved through the formation of heteropolymers in cyanobacteria

    Structural Determinants and Their Role in Cyanobacterial Morphogenesis

    No full text
    Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.ISSN:2075-172

    Role of natural transformation in the evolution of small cryptic plasmids in Synechocystis sp. PCC 6803

    No full text
    Small cryptic plasmids have no clear effect on the host fitness and their functional repertoire remains obscure. The naturally competent cyanobacterium Synechocystis sp. PCC 6803 harbours several small cryptic plasmids; whether their evolution with this species is supported by horizontal transfer remains understudied. Here, we show that the small cryptic plasmid DNA is transferred in the population exclusively by natural transformation, where the transfer frequency of plasmid‐encoded genes is similar to that of chromosome‐encoded genes. Establishing a system to follow gene transfer, we compared the transfer frequency of genes encoded in cryptic plasmids pCA2.4 (2378 bp) and pCB2.4 (2345 bp) within and between populations of two Synechocystis sp. PCC 6803 labtypes (termed Kiel and Sevilla). Our results reveal that plasmid gene transfer frequency depends on the recipient labtype. Furthermore, gene transfer via whole plasmid uptake in the Sevilla labtype ranged among the lowest detected transfer rates in our experiments. Our study indicates that horizontal DNA transfer via natural transformation is frequent in the evolution of small cryptic plasmids that reside in naturally competent organisms. Furthermore, we suggest that the contribution of natural transformation to cryptic plasmid persistence in Synechocystis is limited

    SepT, a novel protein specific to multicellular cyanobacteria, influences peptidoglycan growth and septal nanopore formation in Anabaena sp. PCC 7120

    No full text
    ABSTRACT Anabaena sp. PCC 7120 grows by forming filaments of communicating cells and is considered a paradigm of bacterial multicellularity. Molecular exchanges between contiguous cells in the filament take place through multiprotein channels that traverse the septal peptidoglycan through nanopores connecting their cytoplasms. Besides, the septal-junction complexes contribute to strengthen the filament. In search for proteins with coiled-coil domains that could provide for cytoskeletal functions in Anabaena, we identified SepT (All2460). SepT is characteristic of the phylogenetic clade of filamentous cyanobacteria with the ability to undergo cell differentiation. SepT-GFP fusions indicate that the protein is located at the cell periphery and, conspicuously, in the intercellular septa. During cell division, the protein is found at midcell resembling the position of the divisome. The bacterial adenylate cyclase two-hybrid analysis shows SepT interactions with itself and putative elongasome (MreB, RodA), divisome (FtsW, SepF, ZipN), and septal-junction (SepJ)-related proteins. Thus, SepT appears to rely on the divisome for localization at mature intercellular septa to form part of intercellular protein complexes. Two independently obtained mutants lacking SepT showed alterations in cell size and impaired septal and peripheral peptidoglycan incorporation during cell growth and division. Notably, both mutants showed conspicuous alterations in the array of nanopores present in the intercellular peptidoglycan disks, including aberrant nanopore morphology, number, and distribution. SepT appears, therefore, to be involved in the control of peptidoglycan growth and the formation of cell-cell communication structures that are at the basis of the multicellular character of this group of cyanobacteria. IMPORTANCE Multicellular organization is a requirement for the development of complex organisms, and filamentous cyanobacteria such as Anabaena represent a paradigmatic case of bacterial multicellularity. The Anabaena filament can include hundreds of communicated cells that exchange nutrients and regulators and, depending on environmental conditions, can include different cell types specialized in distinct biological functions. Hence, the specific features of the Anabaena filament and how they are propagated during cell division represent outstanding biological issues. Here, we studied SepT, a novel coiled-coil-rich protein of Anabaena that is located in the intercellular septa and influences the formation of the septal specialized structures that allow communication between neighboring cells along the filament, a fundamental trait for the performance of Anabaena as a multicellular organism
    corecore