43 research outputs found

    Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation

    Get PDF
    BACKGROUND AND OBJECTIVES: Locus heterogeneity is well established in autosomal recessive primary microcephaly (MCPH) and to date five loci have been mapped. However, the relative contributions of these loci have not been assessed and genotype-phenotype correlations have not been investigated. DESIGN: A study population of 56 consanguineous families resident in or originating from northern Pakistan was ascertained and assessed by the authors. A panel of microsatellite markers spanning each of the MCPH loci was designed, against which the families were genotyped. RESULTS: The head circumference of the 131 affected subjects ranged from 4 to 14 SD below the mean, but there was little intrafamilial variation among affecteds (± 1 SD). MCPH5 was the most prevalent, with 24/56 families consistent with linkage; 2/56 families were compatible with linkage to MCPH1, 10/56 to MCPH2, 2/56 to MCPH3, none to MCPH4, and 18/56 did not segregate with any of the loci. CONCLUSIONS: MCPH5 is the most common locus in this population. On clinical grounds alone, the phenotype of families linked to each MCPH locus could not be distinguished. We have also shown that further MCPH loci await discovery with a number of families as yet unlinked

    Spin excitations in a single La2_2CuO4_4 layer

    Full text link
    The dynamics of S=1/2 quantum spins on a 2D square lattice lie at the heart of the mystery of the cuprates \cite{Hayden2004,Vignolle2007,Li2010,LeTacon2011,Coldea2001,Headings2010,Braicovich2010}. In bulk cuprates such as \LCO{}, the presence of a weak interlayer coupling stabilizes 3D N\'{e}el order up to high temperatures. In a truly 2D system however, thermal spin fluctuations melt long range order at any finite temperature \cite{Mermin1966}. Further, quantum spin fluctuations transfer magnetic spectral weight out of a well-defined magnon excitation into a magnetic continuum, the nature of which remains controversial \cite{Sandvik2001,Ho2001,Christensen2007,Headings2010}. Here, we measure the spin response of \emph{isolated one-unit-cell thick layers} of \LCO{}. We show that coherent magnons persist even in a single layer of \LCO{} despite the loss of magnetic order, with no evidence for resonating valence bond (RVB)-like spin correlations \cite{Anderson1987,Hsu1990,Christensen2007}. Thus these excitations are well described by linear spin wave theory (LSWT). We also observe a high-energy magnetic continuum in the isotropic magnetic response. This high-energy continuum is not well described by 2 magnon LSWT, or indeed any existing theories.Comment: Revised version to appear in Nature Materials; 6 pages,4 figure

    Am J Hum Genet

    No full text
    Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development

    Phosphorylated extracellular signal-regulated kinase 1/2 immunoreactivity identifies a novel subpopulation of sympathetic preganglionic neurons

    No full text
    Distinct chemical codes are thought to reflect functional specificity in sympathetic preganglionic neurons (SPN). Although a number of chemical candidates have been identified including neurotransmitter-related, calcium-binding and other proteins, signal transduction proteins have been largely neglected. Not only might these chemicals allow discrimination of functionally unique chemical signatures, but they may also identify activated neurons. Immunoreactivity (ir) to phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) was differentially located within the thoracic spinal cord depending upon which of three forms of killing was used: the only exception to this was the intermediolateral cell column (IML) which was consistently, densely labeled. The presence or absence of p-ERK1/2 in SPN (n=17,541) within the IML of the thoraco-lumbar spinal cord was determined in seven rats. SPN were identified on the basis of their location, size and that they contained choline acetyltransferase ir. On average, 58% of SPN contained p-ERK1/2, however, more SPN in both the upper (72%; C8-T4) and lower (78%; T11-L3) thoraco-lumbar spinal cord contained p-ERK1/2-ir than the middle thoracic region (47%; T4-T10). p-ERK1/2-ir was also examined in SPN (n=1895) innervating the adrenal medulla (identified by retrograde tracing using cholera toxin B subunit) combined with localization of neuronal nitric oxide synthase (nNOS) in three rats. On average, 64% of adrenal SPN contain p-ERK1/2-ir, and it was confirmed that all adrenal SPN contain nNOS-ir. It appears that p-ERK1/2-ir SPN, described in this study, have tonically activated receptors that are coupled to intracellular signal transduction pathways that lead to the phosphorylation of ERK1/2

    Hypotension and short-term anaesthesia induce ERK1/2 phosphorylation in autonomic nuclei of the brainstem

    No full text
    The aims of this study were: first, to investigate the effects of anaesthesia on phosphorylated extracellular signal-regulated kinase (p-ERK)1/2-immunoreactivity (-ir) in the brainstem; second, to choose the best anaesthetic for p-ERK1/2 studies; and third, to determine the effect of short-term hypotension on p-ERK1/2-ir in the brainstem. Rats were anaesthetized with halothane, sodium pentobarbital or 100% CO2 narcosis, or were cervically dislocated and within 5 min perfused and the brains processed immunohistochemically for pERK1/2-ir. p-ERK1/2-ir was primarily observed in regions associated with cardiovascular and/or respiratory control. Several regions consistently showed dense p-ERK1/2 labelling, including a restricted region of the ventrolateral medulla (VLM). In contrast, other regions showed differential labelling depending on the mode of death. Cervical dislocation showed the least VLM labelling, limited to a discrete area approximately 0.6–1.4 mm caudal to the facial nucleus. Anaesthetics induced labelling throughout the VLM, with halothane inducing the most. Many p-ERK1/2-ir VLM neurons were catecholaminergic following halothane or sodium pentobarbital anaesthesia, but no double labelling was seen following cervical dislocation. Of the anaesthetics, sodium pentobarbital induced the least labelling and was used subsequently. Intravenous hydralazine was used to induce a 20-min period of hypotension, whereas arterial pressure did not change in vehicle-treated animals. Hydralazine evoked more pERK-ir neurons in specific regions, including the VLM, nucleus tractus solitarius (NTS), parabrachial nuclei, Kolliker-Fuse nucleus and locus coeruleus. Approximately twice as many p-ERK1/2-positive neurons were seen in the intermediate NTS and rostral VLM following hydralazine compared with the vehicle. In conclusion, p-ERK1/2-ir identifies neurons in central autonomic regions, and their number and distribution are markedly affected by anaesthetics, and are increased in some regions by short-term hypotension.14 page(s
    corecore