197 research outputs found

    Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences

    Get PDF
    Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of a wide range of malignant conditions, both as monotherapy and in combination with chemotherapy, including for lymphoma patients. Over 100 ADCs are under preclinical and clinical investigation worldwide. This paper provides an overview of approved and promising ADCs in clinical development for the treatment of lymphoma. Each component of the ADC design, their mechanism of action, and the highlights of their clinical development progress are discussed

    Coating of bioactive glasses with chitosan: The effects of the glass composition and coating method on the surface properties, including preliminary in vitro results

    Get PDF
    Two bioactive glasses were coated with chitosan: SCNB belongs to the SiO2-CaO-Na2O system, and SCNA has the addition of Al2O3 to enhance chemical stability. Different coating methods were compared: direct physical attachment, surface activation through tresyl chloride, and polydopamine as a linker. The samples were char-acterized through SEM-EDS, contact angle measurements, FTIR, zeta potential titrations, tape tests, in vitro precipitation of hydroxylapatite (bioactivity), and cell cultures (RAW 264.7 and UMR-106) on some selected samples. Direct physical attachment (in acetic acid) or use of polydopamine allowed complete surface coverage, while it dropped to one-quarter on both glasses by using tresyl chloride. The coating had a contact angle of about 80 degrees and it well showed typical functional groups (FTIR). The coatings on SCNA were chemically and mechan-ically stable (classified as 4-5B by the tape tests, partially maintained after soaking for 14 days), and showed an isoelectric point around 8. On SCNB, the coatings were unstable (classified as 0-3B, dissolved during soaking) but bioactivity was preserved. The coating affected the biological outcome of SCNA with M0/M1 polarization (1 day) and reduced viability of macrophages (3 days), while osteoblastic cells showed poor adhesion but maintained cell viability and osteogenic potential (3-7 days)

    Recurrence of the oxazole motif in tubulin colchicine site inhibitors with anti-tumor activity

    Get PDF
    Because of its wide spectrum of targets and biological activities, the oxazole ring is a valuable heterocyclic scaffold in the design of new therapeutic agents with anticancer, antiviral, antibacterial, anti-inflammatory, neuroprotective, antidiabetic and antidepressant properties. The presence of two heteroatoms, oxygen and nitrogen, offers possible interactions (hydrogen, hydrophobic, van der Waals or dipoles bonds) with a broad range of receptors and enzymes. Furthermore, the oxazole core conjugates low cytotoxicity with improved compound solubility and is well suited to structural modifications such as substitution with different groups and condensation to aromatic, heteroaromatic or non-aromatic rings, offering diversity when introduced into scaffolds. These features make it a very attractive nucleus in medicinal chemistry. Herein we present a diverse array of oxazole derivatives with potential therapeutic use in multiple tumor models. The emphasis has been addressed to compounds with anti-tubulin activity reported in literature in the last decade, describing their structural features, efficiency and future perspectives

    Effects of rmBMP-7 on Osteoblastic Cells Grown on a Nanostructured Titanium Surface

    Get PDF
    This study evaluates the effects of the availability of exogenous BMP-7 on osteoblastic cells’ differentiation on a nanotextured Ti surface obtained by chemical etching (Nano-Ti). The MC3T3-E1 and UMR-106 osteoblastic cell lines were cultured for 5 and 7 days, respectively, on a Nano-Ti surface and on a control surface (Control-Ti) in an osteogenic medium supplemented with either 40 or 200 ng/mL recombinant mouse (rm) BMP-7. The results showed that MC3T3-E1 cells exhibited distinct responsiveness when exposed to each of the two rmBMP-7 concentrations, irrespective of the surface. Even with 40 ng/mL rmBMP-7, important osteogenic effects were noticed for Control-Ti in terms of cell proliferation potential; Runx2, Osx, Alp, Bsp, Opn, and Smad1 mRNA expression; and in situ ALP activity. For Nano-Ti, the effects were limited to higher Alp, Bsp, and Opn mRNA expression and in situ ALP activity. On both surfaces, the osteogenic potential of UMR-106 cultures remained unaltered with 40 ng/mL rmBMP-7, but it was significantly reduced when the cultures were exposed to the 200 ng/mL concentration. The availability of rmBMP-7 to pre-osteoblastic cells at the concentrations used alters the expression profile of osteoblast markers, indicative of the acquisition of a more advanced stage of osteoblastic differentiation. This occurs less pronouncedly on the nanotextured Ti and without reflecting in higher mineralized matrix production by differentiated osteoblasts on both surfaces

    Influence of a Physiologically Formed Blood Clot on Pre-Osteoblastic Cells Grown on a BMP-7-Coated Nanoporous Titanium Surface

    Get PDF
    Titanium (Ti) nanotopography modulates the osteogenic response to exogenous bone morphogenetic protein 7 (BMP-7) in vitro, supporting enhanced alkaline phosphatase mRNA expression and activity, as well as higher osteopontin (OPN) mRNA and protein levels. As the biological effects of OPN protein are modulated by its proteolytic cleavage by serum proteases, this in vitro study evaluated the effects on osteogenic cells in the presence of a physiological blood clot previously formed on a BMP-7-coated nanostructured Ti surface obtained by chemical etching (Nano-Ti). Pre-osteoblastic MC3T3-E1 cells were cultured during 5 days on recombinant mouse (rm) BMP-7-coated Nano-Ti after it was implanted in adult female C57BI/6 mouse dorsal dermal tissue for 18 h. Nano-Ti without blood clot or with blood clot at time 0 were used as the controls. The presence of blood clots tended to inhibit the expression of key osteoblast markers, except for Opn, and rmBMP-7 functionalization resulted in a tendency towards relatively greater osteoblastic differentiation, which was corroborated by runt-related transcription factor 2 (RUNX2) amounts. Undetectable levels of OPN and phosphorylated suppressor of mothers against decapentaplegic (SMAD) 1/5/9 were noted in these groups, and the cleaved form of OPN was only detected in the blood clot immediately prior to cell plating. In conclusion, the strategy to mimic in vitro the initial interfacial in vivo events by forming a blood clot on a Ti nanoporous surface resulted in the inhibition of pre-osteoblastic differentiation, which was minimally reverted with an rmBMP-7 coating

    Lembo miofasciale di vasto laterale nella ricostruzione della lingua

    Get PDF
    Nell'ultimo decennio il lembo antero-laterale di coscia (ALT) è diventato il lembo libero più utilizzato nella ricostruzione della lingua, dal momento che esso è caratterizzato da bassa morbidità a livello del sito donatore e da migliori risultati estetici. Tuttavia, l'ALT fascio-cutaneo può essere insufficiente nella ricostruzione nei difetti maggiori (es. glossectomia totale) mentre la sua variante muscolo-cutanea (che include il muscolo vasto laterale)' può essere troppo voluminosa. Scopo dello studio è quello di descrivere la nostra esperienza preliminare nella ricostruzione della lingua utilizzando il lembo libero mio-fasciale di vasto laterale che potrebbe a nostro parere offrire notevoli vantaggi nella ricostruzione testa-collo come: possibilità di confezionare un lembo voluminoso quando necessario, ottimi risultati funzionali, obliterazione di spazi morti con prevenzione dello sviluppo di fistola e infezione con minima morbidità a livello del sito donatore

    Marine anticancer agents: An overview with a particular focus on their chemical classes

    Get PDF
    UID/Multi/04378/2019 IF/00700/2014 grant number 216Z167 grant RTA 2015-00010-C03-02 No. PBA/MB/16/01 PDOC/19/02/01The marine environment is a rich source of biologically active molecules for the treatment of human diseases, especially cancer. The adaptation to unique environmental conditions led marine organisms to evolve different pathways than their terrestrial counterparts, thus producing unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds have been isolated from marine micro- and macro-organisms including but not limited to fungi, bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G), fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin. This review focuses on the bioactive molecules derived from the marine environment with anticancer activity, discussing their families, origin, structural features and therapeutic use.publishersversionpublishe
    corecore