21 research outputs found

    Sensitive Absorption Imaging of Single Atoms in Front of a Mirror

    Get PDF
    In this paper we show that the sensitivity of absorption imaging of ultracold atoms can be significantly improved by imaging in a standing-wave configuration. We present simulations of single-atom absorption imaging both for a travelling-wave and a standing-wave imaging setup, based on a scattering approach to calculate the optical density of a single atom. We find that the optical density of a single atom is determined only by the numerical aperture of the imaging system. We determine optimum imaging parameters, taking all relevant sources of noise into account. For reflective imaging we find an improvement of 1.7 in the maximum signal-to-noise ratio can be achieved. This is particularly useful for imaging in the vicinity of an atom chip, where a reflective surface is naturally present

    Off-axis dipole forces in optical tweezers by an optical analog of the {Magnus} effect

    Get PDF
    It is shown that a circular dipole can deflect the focused laser beam that induces it, and will experience a corresponding transverse force. Quantitative expressions are derived for Gaussian and angular tophat beams, while the effects vanish in the plane-wave limit. The phenomena are analogous to the Magnus effect pushing a spinning ball onto a curved trajectory. The optical case originates in the coupling of spin and orbital angular momentum of the dipole and the light. In optical tweezers the force causes off-axis displacement of the trapping position of an atom by a spin-dependent amount up to λ/2π\lambda/2\pi, set by the direction of a magnetic field. This suggests direct methods to demonstrate and explore these effects, for instance to induce spin-dependent motion.Comment: 5 pages, 3 figures; plus 3 pages Supplemental Material (accepted version

    Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach

    Get PDF
    We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits, which constitute a natural platform for such non-binary problems. Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering, including Hamiltonian formulation of the algorithm, analysis of its performance, identification of a suitable level structure for 87Sr{}^{87}{\rm Sr} and specific gate design. We show the qudit implementation is superior to the qubit encoding as quantified by the gate count. For single layer QAOA, we also prove (conjecture) a lower bound of 0.63670.6367 (0.66990.6699) for the approximation ratio on 3-regular graphs. Our numerical studies evaluate the algorithm's performance by considering complete and Erd\H{o}s-R\'enyi graphs of up to 7 vertices and clusters. We find that in all cases the QAOA surpasses the Swamy bound 0.76660.7666 for the approximation ratio for QAOA depths p≥2p \geq 2. Finally, by analysing the effect of errors when solving complete graphs we find that their inclusion severely limits the algorithm's performance.Comment: 22 + 11 page

    Collective suppression of optical hyperfine pumping in dense clouds of atoms in microtraps

    Get PDF
    We observe a density-dependent collective suppression of optical pumping between the hyperfine ground states in an array of submicrometer-sized clouds of dense and cold rubidium atoms. The suppressed Raman transition rate can be explained by strong resonant dipole-dipole interactions that are enhanced by increasing atom density, and are already significant at densities of ï°€0.1k3, where k denotes the resonance wave number. The observations are consistent with stochastic electrodynamics simulations that incorporate the effects of population transfer via internal atomic levels embedded in a coupled-dipole model

    Classical wave-optics analogy of quantum information processing

    Get PDF
    An analogous model system for quantum information processing is discussed, based on classical wave optics. The model system is applied to three examples that involve three qubits: ({\em i}) three-particle Greenberger-Horne-Zeilinger entanglement, ({\em ii}) quantum teleportation, and ({\em iii}) a simple quantum error correction network. It is found that the model system can successfully simulate most features of entanglement, but fails to simulate quantum nonlocality. Investigations of how far the classical simulation can be pushed show that {\em quantum nonlocality} is the essential ingredient of a quantum computer, even more so than entanglement. The well known problem of exponential resources required for a classical simulation of a quantum computer, is also linked to the nonlocal nature of entanglement, rather than to the nonfactorizability of the state vector.Comment: 9 pages, 6 figure

    Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach

    Get PDF
    We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits, which constitute a natural platform for such non-binary problems. Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering, including Hamiltonian formulation of the algorithm, analysis of its performance, identification of a suitable level structure for 87Sr and specific gate design. We show the qudit implementation is superior to the qubit encoding as quantified by the gate count. For single layer QAOA, we also prove (conjecture) a lower bound of 0.6367 (0.6699) for the approximation ratio on 3-regular graphs. Our numerical studies evaluate the algorithm's performance by considering complete and Erdős-Rényi graphs of up to 7 vertices and clusters. We find that in all cases the QAOA surpasses the Swamy bound 0.7666 for the approximation ratio for QAOA depths p≥2. Finally, by analysing the effect of errors when solving complete graphs we find that their inclusion severely limits the algorithm's performance

    Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach

    Get PDF
    We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits, which constitute a natural platform for such non-binary problems. Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering, including Hamiltonian formulation of the algorithm, analysis of its performance, identification of a suitable level structure for 87Sr and specific gate design. We show the qudit implementation is superior to the qubit encoding as quantified by the gate count. For single layer QAOA, we also prove (conjecture) a lower bound of 0.6367 (0.6699) for the approximation ratio on 3-regular graphs. Our numerical studies evaluate the algorithm’s performance by considering complete and Erdős-Rényi graphs of up to 7 vertices and clusters. We find that in all cases the QAOA surpasses the Swamy bound 0.7666 for the approximation ratio for QAOA depths p ≥ 2. Finally, by analysing the effect of errors when solving complete graphs we find that their inclusion severely limits the algorithm’s performance

    Time and frequency domain solutions in an optical analogue of Grover's search algorithm

    Get PDF
    We present new results on an optical implementation of Grover’s quantum search algorithm. This extends previous work in which the transverse spatial mode of a light beam oscillates between a broad initial input shape and a highly localized spike, which reveals the position of the tagged item. The spike reaches its maximum intensity after N round trips in a cavity equipped with two phase plates, where N is the ratio of the surface area of the original beam and the area of the phase spot or tagged item. In our redesigned experiment the search space is now two dimensional. In the time domain, we demonstrate for the first time a multiple-item search where the items appear directly as bright spots on the images of a gated camera. In a complementaryexperiment we investigate the searching cavity in the frequency domain. The oscillatory nature of the search algorithm can be seen as a splitting of cavity eigenmodes, each of which concentrates up to 50% of its power in the bright spot corresponding to the solution
    corecore