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We study the correlation clustering
problem using the quantum approximate
optimization algorithm (QAOA) and qu-
dits, which constitute a natural platform
for such non-binary problems. Specifically,
we consider a neutral atom quantum com-
puter and propose a full stack approach for
correlation clustering, including Hamilto-
nian formulation of the algorithm, analy-
sis of its performance, identification of a
suitable level structure for 87Sr and spe-
cific gate design. We show the qudit im-
plementation is superior to the qubit en-
coding as quantified by the gate count. For
single layer QAOA, we also prove (con-
jecture) a lower bound of 0.6367 (0.6699)
for the approximation ratio on 3-regular
graphs. Our numerical studies evaluate
the algorithm’s performance by consider-
ing complete and Erdős-Rényi graphs of
up to 7 vertices and clusters. We find
that in all cases the QAOA surpasses the
Swamy bound 0.7666 for the approximation
ratio for QAOA depths p ≥ 2. Finally, by
analysing the effect of errors when solving
complete graphs we find that their inclu-
sion severely limits the algorithm’s perfor-
mance.

1 Introduction

The Quantum Approximate Optimization Algo-
rithm (QAOA) is a promising attempt at trying
to find a quantum advantage when using near-
term Noisy Intermediate-Scale Quantum (NISQ)
devices [50]. The current body of literature
points into mixed directions as far as the util-
ity of QAOA is concerned: whilst it has provable
advantages such as recovering near optimal query
complexity in Grover’s search [74], exhibiting
universality [86, 92] and the possibility for quan-
tum supremacy [49], there are also known limita-
tions in the low depth regime [7, 26, 65, 90]. How-
ever, current analytical tool for analysing the per-
formance of QAOA have only been able to inves-
tigate very specific problem instances, predomi-
nantly at low depth [32, 52, 145, 146, 150]. A
general analytical approach remains to be found,
which is why a large portion of the literature re-
sorts to numerical simulation.

Earlier work on QAOA studied problems such
as MAXCUT [50, 62, 145] and MAX E3LIN2 [51],
where the translation procedure entails translat-
ing constraints on a binary string into a cost
Hamiltonian. In the current work we focus on the
correlation clustering problem. First introduced
by Bansal et al. [16], reductions to correlation
clustering are common in machine-learning con-
texts, with applications ranging from data anal-
ysis [21] to image recognition and pose estima-
tion [71]. Since it is a computationally intensive
task to find these clusterings, with approxima-
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tions being APX-hard [30], it is natural to ask
whether quantum algorithms can do better.

For much of the earlier work, the QAOA
blueprint entailed working with qubits: the +1/-
1 eigenstates of the Pauli Z-operator are chosen
in direct correspondence with the variables of
the underlying combinatorial optimization prob-
lem to compute the cost function, and the mixer
Hamiltonian is chosen as an independent Pauli X
applied to each qubit. For instance, the MAX-
CUT problem divides a given graph into two sets,
which makes the two-qubit ZZ-operator suitable
for encoding the objective function. Our situ-
ation is quite different as correlation clustering
naturally encompasses many more different clus-
ters. While it is always possible in principle to
encode higher-dimensional information into mul-
tiple qubits, this does significantly complicate the
interactions required.

In this paper we investigate a different route,
namely encoding the cluster choice into a qu-
dit. Qudits can be realized in a number of
physical platforms including photons [12, 22,
70, 72, 80, 87, 107, 142, 152], ions [82, 106,
120], molecules [9, 68, 115], superconducting cir-
cuits [99, 133, 137], nuclear magnetic resonance
platforms [44, 58] or NV centres [94, 123] and can
offer a more resource efficient approach to quan-
tum computing as compared to qubits [144]. Im-
portantly, for the present problem of correlation
clustering, they offer a support with the Hilbert
space which is native to the studied problem,
namely the different qudit states can encode the
labelling of nodes into their respective cluster.

In this respect, quantum computers based on
trapped neutral atoms interacting via highly
excited Rydberg states are of particular inter-
est [109, 112]. These platforms underwent strik-
ing developments in recent years with advances
such as the creation of arbitrary quantum proces-
sor geometries [18, 19, 48] containing hundreds of
individual atoms [116, 119] or the efficient im-
plementation of quantum gates [83, 88]. This
in principle allows for efficient implementation of
QAOA algorithms [38, 153] and led to intense ef-
forts, both academic and industrial [1–4], in neu-
tral atom based quantum computing [67, 93].

Even though QAOA was invented as a NISQ-
suitable algorithm, it can be far from trivial to
connect the abstract Hamiltonian formulation to
a physical system. Problems include how to re-

late the intended Hamiltonians to manipulations
on the system, how to manage the spatial struc-
ture and non-uniformity of the pairwise interac-
tions of a system in a lattice, and careful analysis
of the types of errors that might occur in these
operations.

It has also become progressively clear that an
efficient quantum algorithm has to be designed in
a way which implicitly takes into account the rel-
evant hardware constraints, a so-called full-stack
approach [10]. In this work we describe precisely
such a full-stack solution starting from a com-
binatorial optimization problem (the correlation
clustering problem), through a QAOA Hamilto-
nian formulation, all the way to describing how
to control and analyse a Rydberg qudit system.
This entails:

• We encode the correlation clustering prob-
lem into the QAOA paradigm, specifically
tailored for qudit quantum systems. We give
several improvements to the vanilla QAOA
(see Sec. 2 for the definition), guided by sim-
ulations, including experiments with various
meta-optimization strategies.

• Next, we go from the abstract Hamiltonian
formulation to the operations available for
an actual abstract Rydberg system. This
entails showing how to drive the Rydberg
system in a way that corresponds to the cost
and mixer Hamiltonians, where we also have
to take care of the spatial aspect of the in-
teractions. Here, we focus on the example
of fermionic strontium 87Sr, but a similar
derivation would apply to any related sys-
tem.

• We analyse the algorithm performance in the
presence of noise corresponding to the ’ran-
dom Pauli’ method and link this error model
to actual errors in Rydberg qudit systems.

• As an extra theoretical result, we apply the
techniques of Wurtz and Love [150] to the
case of correlation clustering on 3-regular
graphs, showing that for a slightly modified
QAOA at p = 1 the approximation ratio is
at least 0.6367. From numerical results ob-
tained through local optimization, we con-
jecture that a tighter bound of this approx-
imation ratio would be 0.6699.
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Related work Independently of the current
work, other studies have considered apply-
ing QAOA to multi-cut versions of MAX-k-
CUT [54], and on MAX k-VERTEX COVER [28,
33], which are problems with related properties.
A key difference between correlation clustering
and the other studied problems is the explicit
presence of positive / negative edges in correla-
tion clustering, and the idea that for correlation
clustering the number of clusters is not deter-
mined yet as part of the input. Additionally, we
optimize the creation of the QAOA formulation,
ending up with a native qudit implementation,
as well as taking a full stack approach: we study
all the steps from the problem towards the im-
plementation on a realistic near-term quantum
device.

The paper is organized as follows. In Sec. 2 we
briefly recap the QAOA. In Sec. 3 we introduce
the problem of correlation clustering and its im-
plementation as QAOA. We then describe vari-
ous strategies to improve the algorithm’s perfor-
mance in Sec. 4, which we study in Sec. 5. Next,
in Sec. 6 we discuss the experimental building
blocks of the qudit Rydberg quantum computer.
We proceed with the processor design and the
associated gate count and comparison to qubits
in Sec. 7. Finally, we discuss how the errors af-
fect the algorithm in Sec. 8, and we conclude and
discuss open questions in Sec. 9

2 Recap of QAOA
In this section we briefly review the quantum ap-
proximate optimization algorithm (QAOA) [50].
Consider some combinatorial optimization prob-
lem with objective function C : x→ R acting on
n-bit strings x ∈ {0, 1}n, domain D ⊆ {0, 1}n,
and objective

max
x∈D

C(x). (1)

In maximization, an approximate optimization
algorithm aims to find a string x′ that achieves a
desired approximation ratio α, i.e.

C(x′)
C∗

≥ α, (2)

where C∗ = maxx∈D C(x). In QAOA, such com-
binatorial optimization problems are encoded

into a cost Hamiltonian HC , a mixing Hamilto-
nian HM and some initial quantum state |ψ0〉.
The cost Hamiltonian is diagonal in the compu-
tational basis by design, and represents C if its
eigenvalues satisfy

HC |x〉 = C(x)|x〉 for all x ∈ {0, 1}n. (3)

The mixing Hamiltonian HM depends on D and
its structure [63], and is in the unconstrained case
(i.e. when D = {0, 1}n) usually taken to be the
transverse field Hamiltonian HM =

∑
j Xj . Con-

straints (i.e. when D ⊂ {0, 1}n) can be incor-
porated directly into the mixing Hamiltonian or
are added as a penalty function in the cost Hamil-
tonian. The initial quantum state |ψ0〉 is usually
taken as the uniform superposition over all possi-
ble states in the domain. QAOAp, parametrized
in γ = (γ0, γ1, . . . , γp−1), β = (β0, β1, . . . , βp−1),
refers to a level-p QAOA circuit that applies p
steps of alternating time evolutions of the cost
and mixing Hamiltonians on the initial state. At
step k, the unitaries of the time evolutions are
given by

UC(γk) = e−iγkHC , (4)
UM (βk) = e−iβkHM . (5)

So the final state |γ, β〉 of QAOAp is given by

|γ, β〉 =
p−1∏
k=0

UM (βk)UC(γk)|ψ0〉. (6)

The expectation value Fp(γ, β) of the cost Hamil-
tonian for state |γ, β〉 is given by

Fp(γ, β) = 〈γ, β|HC |γ, β〉, (7)

and can be statistically estimated by taking sam-
ples of |γ, β〉. The achieved approximation ratio
(in expectation) of QAOAp is then

α = Fp(γ, β)
C∗

. (8)

The parameter combinations of γ, β are usually
found through a classical optimization procedure
that uses (7) as a black-box function to be max-
imized. The QAOA framework as has been de-
scribed so far, with randomized initial points and
without any other improvement strategies, will
be referred to as the vanilla QAOA in the rest of
this work.
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3 Correlation clustering

Generally, the objective of clustering problems is
to group elements into a family of subsets, named
clusters, such that the elements within a cluster
are more similar to one another than elements
in different clusters. In case of the correlation
clustering problem, we would like to cluster with-
out specifying the number of clusters in advance
based only on pairwise relations. The problem
was introduced by Bansal et al. [16] to the theo-
retical computer science community and has ap-
plications amongst others in social psychology,
statistical mechanics and biological networks.

Instances of correlation clustering problems are
commonly represented as a graph problem, where
the nodes are the elements to be grouped in clus-
ters and edge weights represent similarities be-
tween these elements. Correlation clustering is
then formally defined in the following way: let
G(V,E) be an undirected graph, where V,E, de-
notes the sets of nodes and edges, respectively.
Let N be the total amount of nodes, i.e. N = |V |.
Every edge (u, v) ∈ E is labelled either ‘+’ or
‘–’, depending on whether the elements are sim-
ilar or dissimilar, respectively. This is the un-
weighted variant of correlation clustering. Addi-
tionally, one can also consider the weighted vari-
ant: edges (u, v) carry weights w(u,v) ∈ R+ de-
scribing an additional measurement of similar-
ity or dissimilarity. There are two complemen-
tary problems to correlation clustering. MAXA-
GREE aims to maximize the number of agree-
ments, defined as the number of ‘+’ edges inside
clusters plus the number of ‘–’ edges across clus-
ters. In MINDISAGREE one wants to minimize
the number of disagreements: the number of ‘+’
edges across different clusters plus the number of
‘–’ edges inside clusters. The decision versions
of MAXAGREE and MINDISAGREE are iden-
tical and known to be NP-complete [16]. How-
ever, they differ in the approximation setting.
MAXAGREE on general graphs is APX-hard:
to be precise, it has been shown that for every
ε > 0, it is NP-hard to approximate both the
weighted [30] and unweighted [136] versions of
MAXAGREE within a factor of 79/80 + ε, and
the best classical algorithm has approximation
ratio α = 0.7666 [134] via semi-definite program-
ming (SDP) with rounding techniques. In the re-
mainder of the text this specific value of α will be
refered to as the Swamy bound, named after the

author of Ref [134]. If the graph is complete and
unweighted the problem becomes significantly
easier although still NP-hard. For complete
graphs, Bansal et al. provided a polynomial time
approximation scheme (PTAS) [16]. MINDIS-
AGREE is APX-hard on both complete [16] and
general graphs [30], and the best approximation
algorithm achieves only an approximation loga-
rithmic in the input size [47]. When the corre-
lation clustering problem is restricted to a fixed
number of clusters k, it also remains NP-hard
when k ≥ 2, albeit with existing PTASs for both
the maximization as well as the minimization
variant [60].

Other algorithmic methods that have been pro-
posed to solve correlation clustering include in-
teger linear programming (ILP) and heuristics:
examples are greedy methods [6, 100, 125], local
search methods [59, 61], and large move making
algorithms [14]. In practice, the ILP-approach
can solve to about 200 nodes due to a scaling of
O(N3) in the amount of constraints in its for-
mulation. The SDP relaxation method has bet-
ter scaling in its constraints (O(N2)), with the
best SDP solvers handling up to about several
thousands of nodes [46]. Heuristics have been
shown to be able to handle problems consisting
over 100k nodes [14]. In this work, we will focus
on unweighted correlation clustering in complete
and Erdős–Rényi graphs.

A specific real-world application of the cor-
relation clustering problem can be found in
the sub-task of distinguishing between persons
within multi-person pose estimation. For exam-
ple, decomposing different persons is necessary in
human-robot collaborations where humans fulfil
tasks collaboratively with robots and a robot has
to differentiate between the position of different
human collaborators. In the approach presented
in [71], a Convolutional Neural Network (CNN)
computes candidates for the location of different
body parts of different persons within a given
picture and also pairwise terms how these can-
didates relate to each other. Leaving out the
specific labelling of body parts of each person,
the detected body part candidates from the CNN
can be represented as nodes and the computed
pairwise terms as edge weights of a graph and
thus solving the correlation clustering problem of
this graph corresponds to a decomposition of the
persons in a picture (cf. illustration in Fig. 1).
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Figure 1: Overlay of a correlation clustering instance
on a real-world picture to illustrate the occurrence of
correlation clustering within the problem of decomposing
persons in images. The graph contains N = 7 nodes
with weights w(u,v) = ±1 while the colours indicate an
optimal clustering with objective function value of 10
in the MAXAGREE setting. Note how in general the
graph does not need to have a perfect (unfrustrated)
clustering, i.e. where all allocated clusters match the
weights, as is in this example not the case for nodes ‘0’
and ‘2’.

From industrial practice we know that the ob-
jective function within the correlation clustering
problem can be very sensitive to the assignments
of parameters and sometimes even a sufficiently
good enough local minimum cannot be found
within reasonable time by using classical algo-
rithms.

3.1 Hamiltonian formulation for qudit systems

Let G = (V,E) be a graph with N = |V | nodes
that specifies the input to some correlation clus-
tering problem instance. Every edge (u, v) ∈ E
has a weight w(u,v) ∈ {−1,+1}, representing the
‘+’ and ‘–’ relationships in unweighted correla-
tion clustering. We assume that we have access
to a qudit quantum system of N qudits consist-
ing of d levels, such that every node is described
by a single qudit state |cu〉 meaning that node u
is put in (a superposition of) cluster(s) c 1. We

1Here, we would like to stress that even though d might
be limited, this will not be too detrimental to the QAOA’s
performance in practice, even when the optimal solution
would require more than d clusters. This was already
shown for the Swamy algorithm, which always produces
a solution that uses at most 6 clusters and is still able to
achieve a high expected approximation ratio [134]. Con-
sider for example the all-negative weights graph, which
would be an instance that requires the maximal amount of

write [d] for the set {0, . . . , d − 1}. We define
a two-body interaction V d

(u,v) that acts on a two
qudit sub-space according to

V d
(u,v) =

∑
i 6=j∈[d]

|iu〉|jv〉〈iu|〈jv| −
∑
i∈[d]
|iu〉|iv〉〈iu|〈iv|,

(9)

which is a d2 × d2 matrix with eigenvalues of
-1 (+1) for nodes that are put in the same (dif-
ferent) clusters. Our full cost Hamiltonian is
obtained by summing over all edges taking the
product of the edge weight and (9),

HC =
∑

(u,v)∈E
w(u,v)V

d
(u,v). (10)

To follow the convention in physics, we aim to
minimize this cost Hamiltonian – note that this is
equivalent to maximizing the classical cost func-
tion. We comment that this encoding is similar
to the binary encoding for MAX-k-CUT recently
proposed in Refs. [25, 54]. A Hamiltonian that
can mix over the single qudit subspace was given
in the work by Hadfield et al. [63], where the
following single-qudit mixing Hamiltonian is pro-
posed

hM (r) =
r∑
i=1

(
(Σx)i + (Σx†)i

)
, (11)

where r ∈ {1, . . . , d − 1}, a parameter determin-
ing the connectivity of the mixer and Σx is the
generalized Pauli X-operator, given by

Σx =


0 1
1

. . .

1 0

. (12)

One observes that for r = 1, the single-qudit
mixer is equal to

hM (r = 1) =



0 1 1

1
. . .

. . .
. . .

. . . 1
1 1 0


(13)

clusters to be used, which equals the number of the graph
vertices, d = N . In this case, one would still be able to
satisfy at least d − 1 out of d edges and thus is still able
to achieve an approximation ratio larger than (d − 1)/d.
For the experimental example discussed in Sec. 6, we have
d = 10 and thus the minimum approximation ratio would
be 9/10 = 0.9.
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such that every level is connected to its nearest
neighbours, including periodic boundary condi-
tions. The full mixing Hamiltonian is then

HM =
∑
u∈V

hM . (14)

We can pick any value of r ∈ {1, . . . , d−1}, where
the special cases at the boundary are called the
single-qudit ring mixer for r = 1 and the fully-
connected mixer for r = d−1. We take the super-
position of all qudit computational basis states as
our initial state, i.e.

|ψ0〉 = 1√
dN

∑
z∈[d]N

|z〉. (15)

Note how the cost Hamiltonian formulation (10)
is not equivalent to correlation clustering in the
MAXAGREE setting: instead of counting just
the agreements we count the number of agree-
ments minus the disagreements. However, since
every clustering of two nodes (for which an edge
exists), needs to be in either agreement or dis-
agreement with the corresponding weight, the
sum of the agreements and disagreements is equal
to the number of edges in the unweighted setting.
Therefore, for a correlation clustering problem
with optimum value C∗ in the MAXAGREE set-
ting the approximation ratio of this QAOA for-
mulation is equal to

Fp(γ, β) + |E|
2C∗ . (16)

For the numerical simulations in the algorithmic
sections of this work, we implement the initial
state by generalized Hadamard operations and
assume that the cost and mixing unitaries are
elementary operations native to our system. We
adopt the Cirq framework [42], since it supports
qudit systems, with custom gate operations to
match our established formulation.

4 Improvement strategies
We will be interested in performance at low-
depth and hence we only consider r = 1 in
Eq.(11) for the simulations in sections 4 and 5.
Through numerical evaluation of the vanilla
QAOA, we found that the following strategies
considerably improved the QAOA’s performance
for our problem:

Choice of the classical optimizer There
is no such thing as a one-size-fits-all classical
optimizer that performs well for all QAOA
problems: performance varies amongst different
problems and can greatly differ for different
hyper-parameter settings [81]. We decided to
compare different classical optimizers, found in
the scikit-quant [81] and SciPy Python pack-
ages [5], using their off-the-shelf hyper-parameter
settings. In a small study, the best performance
was obtained by using BOBYQA. The results of
the full comparison can be found in Appendix A.

Restarts. Local optimizers can greatly benefit
from restarts (i.e. re-running the same algorith-
mic procedure with the same parameter settings)
since they are sensitive to the quality of initial
points. But even with fixed initial points, due to
stochastic elements in the optimizers’ procedures
as well as being introduced from sampling (or
gate errors), the algorithms can be made more
robust by incorporating restarts. The work of
Shaydulin et al. shows how multi-start methods
can improve QAOA [121]. In our numerical
simulations we set the number of restarts to 5.

Optimised initial points. Numerical and
analytical works have indicated that QAOA’s
parameters γ, β are concentrated in parameter
space for instances that belong to ‘similar
classes’ [8, 24, 130]. In practice, this means that
we can select a single instance from a class, work
very hard to find optimal parameters through
variational optimization or from analytical argu-
ments, and store these values to be used as initial
points when solving other instances. For every
considered N, d, we use the all-negative-weights
instance to obtain the parameter values to be
used as initial points. Numerical results of a
study at p = 1 can be found in Appendix B.

Looping over clusters. Initial experiments
showed that the vanilla QAOA performed well
on instances for which the optimal solution
required many clusters – this means that the
optimal cluster number was close to the available
number of clusters d – but not so when the num-
ber of clusters was low. Since our Hamiltonian
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Figure 2: Approximation ratios α for different improve-
ments added to the vanilla QAOA algorithm applied to
the N = 4 complete graph data set. The blue plot (la-
bel ‘Normal’) represents the performance without any of
the improvement strategies as suggested in the text. In
all cases COBYLA was used as the classical optimizer.
The filled circles data points indicate the average value
over all 50 instances and the shaded area represents the
error in the mean.

formulation allows for d to be varied, we can
iterate the algorithm over all possible maximum
number of clusters, i.e. d ∈ {1, . . . , N}, and keep
the best result obtained over all iterations.

Fig. 2 shows the numerical results of the
performance on a data set of 50 correlation
clustering instances on complete graphs with
weights randomly picked out of {−1,+1}. In
the creation of the data set, we swept the
probability for giving an edge weight ‘+1’ from
0 to 1 uniformly in order to have a good repre-
sentation of all possible weight configurations.
We observe that looping over cluster numbers
has the largest contribution to the improvement,
followed by the optimized initial points, which
work particularly well for intermediate values
of 2 ≤ p ≤ 4. This could be due to the fact
that for p = 1 the optimizer is able to find good
points even with bad initial points, whilst for
p = 5 the distance from the initial point and
the optimal point might be larger in parameter
space, which results in the initial point becoming
effectively random again. The restarts are
expected to have less of an impact when used in
conjunction with good initial points. Examples
of other variants and strategies to QAOA that
one could consider, but were not used in this
work, are RQAOA [25], ADAPT-QAOA [154]

Figure 3: Performance of QAOA, measured in obtained
1 minus the approximation ratio (1-α), on the data sets
of complete graphs (blue) and Erdős–Rényi graphs (or-
ange) with edge creation probabilities Pe = 0.5 as a
function of the number of nodes N and p. The Swamy
bound is added only for the Erdős–Rényi graphs as a
PTAS exists for complete graphs. To improve readabil-
ity, artificial continuity is added between the discrete
data for standard deviation (dark shaded), total range
(light shaded) and the Swamy bound (dashed black line).

and parameter initialization heuristics [153].

5 Performance

We consider correlation clustering data sets con-
sisting of complete graphs as well as Erdős–Rényi
graphs: these are random graphs with a fixed
amount of nodes N but for which the edges are
created according to some edge creation probabil-
ity. In the creation of our Erdős–Rényi data sets
we use an edge creation probability of 0.5, and
additionally have the criteria that every instance
needs to have at least one edge. For both graph
types we again sweep the edge weight probabil-
ity of giving an edge weight ‘+1’ from 0 to 1 to
create 50 random instances.

Fig. 3 shows the average values, standard de-
viation and total range (defined as the worst and
best performance over all instances in a data set
of graphs of fixed size N) of the achieved approx-
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Figure 4: Scatter plot of the achieved approximation
ratios α on the N = 7 complete graph data set as a
function of the optimal number of clusters, which was
obtained through brute force search. In the case when
multiple different cluster numbers were optimal, the data
points are plotted for all of these values.

imation ratios on instances of our data sets as
functions of N and QAOA depth p, achieved by
the QAOA that adopts all strategies as listed in
section 4. We observe that the worst performance
is slightly better for complete graphs than it is
for Erdős–Rényi graphs, which is to be expected
as the complete graph problem instances have
more structure and are also more easily solved
classically [16]. Furthermore, we find a slightly
more profound p-dependence, as reflected for in-
stance in the amplitude of the standard devia-
tion with increasing p, for Erdős–Rényi graphs
as compared to the complete graphs. This is not
surprising, as for the complete graphs the QAOA
at p = 2 is already able to ‘see the whole graph’:
for every edge any other edge is at most p edges
away. The average performance is comparable
amongst different graph types. For p = 1 we
observe that the worst performance on instances
from our bench-marking data sets becomes com-
parable to the Swamy bound of 0.7666 for N ≥ 5,
but for p = 2 we have that the algorithm per-
forms better than this bound on all instances in
the data set

In order to investigate instance-dependence of
the performance, Fig. 4 shows a scatter plot of
the performance on individual instances in the
complete graph data set of N = 7 for different
values of p. We find that the algorithm at low
p has the most difficulty with instances that re-
quire a low number of clusters (except the single-
ton cluster case, which is trivial for d = 1), and

Figure 5: Average (filled circles) and worst (triangles)
approximation ratios α as a function of N for p = 2
for the complete graph (labelled ’C’) and Erdős–Rényi
(labelled ’ER’) data sets. The dashed line is again the
Swamy bound. The shaded area represents the error in
the mean.

as p increases the most difficult instances seem
to have optimal cluster numbers in the middle
between the singleton and all-different clusters.

Next, Fig. 5 shows the average and worst ap-
proximation ratios a function of N giving an in-
dication of the scalability. We observe that the
decrease of the worst approximation ratio in N
seems to slow down considerably for N ≥ 5 (for
complete graphs it even improves). It should
be noted though that it is difficult to make too
definitive statements here: we were limited to
studying graphs up to N = 7 and have no guar-
antee that we used optimal parameters. How-
ever, we can show that the approximation ratio
in the limit of large N can in fact become in-
dependent of N . We propose (conjecture) that
in this limit QAOA1, looping over d = 1, 2, 3, 4,
has a performance guarantee of 0.6367 (0.6699)
on 3-regular graphs. The full derivation of this
bound can be found in Appendix C, and follows
a similar method as the one proposed by Wurtz
and Love [150]. However, it is not yet clear how
this bound changes as a function of the graph’s
degree. For MAXCUT [145] and Maximum Inde-
pendent Set (MIS) [53] it has already been shown
that the approximation ratio at p = 1 decreases
as the degree of the graph increases. Overall,
our results indicate that QAOA, albeit with some
added heuristic strategies, might achieve a com-
petitive approximation ratios with respect to the
best classical approximation algorithm in solv-
ing correlation clustering problems of low-degree
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graphs at low circuit depth.

6 Experimental building blocks

In this section we describe the proposed imple-
mentation of the qudits. While most current
experimental efforts focus on the use of qubits,
neutral atoms are a natural platform for qudits
and we specifically focus on the example of
fermionic strontium, 87Sr [40, 127, 128]. The
reason is that it possesses a nuclear spin I = 9/2
that is decoupled from the electronic spin, which
features dmax = 2I + 1 = 10 hyperfine states in
the ground state manifold, which are insensitive
to electric and magnetic field fluctuations.
Moreover, one can make use of the long-lived
excited states from the 3PJ manifold, which has
been exploited in a recent experiment to create
a Bell state with fidelity reaching 99% [88].
The analysis presented below can be adapted
to the analogous isotope 173Yb of fermionic
ytterbium [55, 132, 135], where however the
maximum available dmax = 6 in the ground state
manifold is smaller compared to dmax = 10 of
87Sr. In the following, we refer to single and two
qudit gates as 1-gates and 2-gates, respectively.

Qudit manifold. The relevant level scheme of
87Sr is sketched in Fig. 6a. As stated above, the
ground state manifold, which we denote with a

slight abuse of notation as |S〉 ≡
∣∣∣1S0, F = 9

2

〉
,

consists of d = 2F + 1 = 10 mF -states,
mF ∈ {−9/2, . . . , 9/2}. We also denote |P〉 ≡∣∣∣3P2, F = 11

2

〉
the excited state manifold, which

we will use to implement the 1- and 2-gates [102]
(here we choose the 3P2 manifold in particular
due to its long lifetime, which allows for a res-
onant excitation to the Rydberg state, cf. be-
low). The optical tweezers providing the trap-
ping potentials are typically realized with light
of wavelength λtweezer that is red-detuned from
the dominant |S〉−

∣∣1P1
〉

trapping transition (not
shown in the Fig. 6a). The choice of the P-
manifold is motivated by the fact that, unlike

the other possible choices such as
∣∣∣3P2, F = 7

2

〉
or∣∣∣3P2, F = 9

2

〉
, it possesses a so-called magic wave-

length λtweezer ≈ 900 nm, for which the transition
frequencies |S,mF 〉 − |P,mF ′〉 are approximately
independent of the intensity of the tweezer light

for all mF ,mF ′ , which ensures a position inde-
pendent addressing frequency of the individual
mF states [41, 113, 138]. The actual addressing
relies on the Zeeman splitting of the P-manifold
and has been experimentally demonstrated using
173Yb [135]. Applying moderate values of the
magnetic field B results in linear Zeeman split-
ting with an energy shift between the adjacent
mF ′ states of µBgB/h, where µB and h is the
Bohr magneton and the Planck constant respec-
tively and g is the Landé g-factor. For the P-
manifold, g ≈ 0.36 and µBg/h ≈ 0.5 MHz/G [23].
This provides a splitting of ≈ 50 MHz between
adjacent mF ′ states for a magnetic field ampli-
tude of 100 G, allowing for both resonant and
off-resonant addressing as we now discuss.

Rydberg states. The 2-gates are implemented via
the Rydberg blockade provided by the interaction
energy V , which for the density-density interac-
tion between a pair of atoms separated by a dis-
tance R typically corresponds to a Van der Waals
type V (R) = C6/R

6, where C6 is so-called “C6”
(or Van der Waals) coefficient [27, 56, 109, 112].

The atom can be excited from the S-manifold
through a two-photon transition via the P-
manifold to a Rydberg state |Ry〉 =

∣∣n3S1
〉

(red
and green arrows in Fig 6a,b). In principle
one could also use a direct one-photon transi-
tion to the

∣∣n1P1
〉

Rydberg state (dashed pur-
ple line in Fig. 6a). However, due to current
technology limitations, such as lack of lasers of
sufficient power (and the associated optical ele-
ments) for the |S〉−

∣∣n1P1
〉

transition wavelength
of ∼ 220 nm, we solely focus on the |S〉−|P〉−|Ry〉
scheme, cf. Fig. 6b. This allows for mF spe-
cific addressability of the Rydberg states as well.
The two-photon transition is typically operated
off-resonantly but given the extremely long life-
time of the P-manifold (τP = 156 s in the ab-
sence of the tweezer light) and to further reduce
the timescales needed for operation we consider a
resonant two-step process: the chosen mF state
is transferred as |S,mF 〉 → |P,mF ′〉 → |Ry〉 us-
ing two consecutive π-pulses or using stimulated
rapid adiabatic passage. The properties of the
relevant manifolds are summarized in Fig. 6b.

In the following, we refer to |S〉 as the qudit
manifold. We note that owing to the long life-
time of the |P〉-manifold, one could in principle
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Figure 6: (a) Relevant level scheme of 87Sr. Proposed qudit states are realized by the ground state manifold
|S〉 =

∣∣1S0, F = 9/2
〉
. The two-qudit gates are realized by exciting the states from |S〉 to a Rydberg manifold

|Ry〉 =
∣∣n3S1

〉
through an intermediate state from the |P〉 =

∣∣3P2, F = 11/2
〉

manifold (red and green arrows). The
dashed violet arrow indicates an alternative possibility to excite the ground state to a Rydberg manifold

∣∣n1P1
〉
, using

a single photon transition. The dark red arrow indicates the transition to the
∣∣3P1, F = 11/2

〉
manifold used for

measurement of the quantum state. (b) Parameters of the manifolds |S〉, |P〉, |Ry〉 relevant for the qudit operations:
transition wavelengths λ, typical Rabi frequencies Ω, decay rates Γ and the associated lifetimes τ from the excited
|P〉, |Ry〉 manifolds and the Landé g-factor quantifying the Zeeman splitting of the magnetic sublevels. The values
of ΓP, τP are taken from [105]. The P-manifold states are used to realize the single qudit gates such as the mixing
unitaries, which are shown in (c) for r = 1 and r = 2, see text for details.

choose it as the basis for the qudit states 2 and
the subsequent analysis can be readily adapted
to this alternative choice.

Having identified the suitable level structure
we now proceed with the design of the 1- and
2-qudit gates.

6.1 1-gates

We consider the implementation of a qudit 1-gate
by coupling the qudit level |`〉 to level |`′〉 by
means of laser fields of Rabi frequency Ω`,`′ ≡
Ωc`,`′ , where Ω ∈ R+ is the Rabi frequency ampli-
tude and c`,`′ is a (dimensionless) complex num-
ber characterizing the individual couplings.

6.1.1 Implementation of hardware mixers

Let us first discuss the implementation of the
mixing unitary UM (βk) = exp[−iβkHM ], cf.
Eqs. (5) and (14). Specifically, we will consider
two specific cases, namely r = 1 and r = 2, and
we further comment on r > 2.

2We note that analogous approach has been adopted
in Ref. [88], where the 3P0 manifold has been used for a
realization of a qubit state.

r = 1.r = 1.r = 1. We propose to implement the r = 1 case as
shown in Fig. 6c. Starting with all qudit levels in
the S-manifold, we apply the following sequence
of pulses:

1. Apply
⌊
d
2

⌋
π-polarized π-pulses on the lev-

els {1, 3, . . . , l}, l = 2
⌊
d
2

⌋
− 1, on the S − P

transition, which brings them from S to P.

2. Apply the Rabi frequencies Ω`,`+1 connect-
ing nearest-neighbour qudit levels for time
τk.

3. Repeat the step 1. to bring the
⌊
d
2

⌋
levels

from P back to S.

In Fig. 6c, the choice of couplings is depicted
by the red arrows and the coupling Hamiltonian
reads

ΩhΩ = Ω


0 c0,1

c∗0,1
. . .

. . . cd−2,d−1
c∗d−2,d−1 0

.
(17)
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When the individual Rabi frequencies Ω`,`′ are
adjusted such that c`,`′=`+1 = 1 ∀ `, hΩ → hM
and the sequence 1.-3. corresponds to the mixing
unitary UM , Eq. (5), with the mixing parameter
βk = Ωτk 3.

One important remark is in order: the mix-
ing Hamiltonian (13) implements a “periodic
boundary condition” in that it couples the
levels 0 and d − 1 (and similarly for higher
r). Such coupling is typically not native to
a physical qudit, which instead corresponds
to “open boundary condition” as is apparent
from (17). We discuss the difference between
using (13) or (17) below, cf. Sec. 6.1.2 and Fig. 7.

r = 2.r = 2.r = 2. For r = 2 we consider an off-resonant cou-
pling exploiting a detuning ∆ from the P-states
as shown in Fig. 6c. This allows to extend the
structure of the coupling Hamiltonian Eq. (17)
to include also a second diagonal. The coupling
Hamiltonian (17) becomes

Ω̃hΩ = Ω̃



0 c̃0,1 c̃0,2

c̃∗0,1
. . .

. . .

c̃∗0,2
. . .

. . . c̃d−3,d−1
. . .

. . . c̃d−2,d−1
c̃∗d−3,d−1 c̃∗d−2,d−1 0


.

(18)
Here the tilde denotes the effective Rabi fre-
quency which in the far-detuned limit is given

by Ω̃`,`′ = Ω`,¯̀Ω¯̀,`′/∆¯̀, where
∣∣∣¯̀〉 is the detuned

state from the P-manifold to which |`〉 and
|`′〉 are coupled. As for r = 1, here the Rabi
frequencies Ω̃`,`′ have to be adjusted such that
c̃`,`+1 = c̃`,`+2 = 1 ∀`.

r > 2.r > 2.r > 2. Going beyond r = 2 becomes non-trivial
due to the connectivity of the coupling Hamil-
tonian (18), here limited to next-to-nearest qu-

3For large d (i.e. close to dmax = 10), achieving
c`,`′=`+1 = 1, ∀`, might be challenging. This is because
the ratio Ω0,1/Ω9,10 between the Rabi frequencies coupling
the smallest and largest ` states is too large (or too small,
depending on the orientation of the magnetic field) so that
c`,`′=`+1 = 1, ∀`, implies either slow operation or further
detrimental decoherence due to the off-resonant scattering
of the intense mixer beams [138]. In this case the mixers
could be implemented in a step-wise fashion by means of
the Givens rotations [101]

dit levels. A general strategy, exploiting the de-
composition of an arbitrary single qudit unitary
into a sequence of parallelized Givens rotations
under the finite connectivity constraint and in-
voking a greedy optimization algorithm has been
described in [101]. As in this work we are con-
cerned only with r ≤ 2 we do not analyse this
situation further.

6.1.2 Performance of hardware mixers

To investigate how the hardware-specific mixers
given by Eqs. (17) and (18) compare to the mixer
(13) we run simulations similar to the ones per-
formed in Sec. 5. To this end we consider the
N = 4 complete graph data set. This choice
is motivated by the fact that for N = 3 (i.e.
d = 3), Eq. (18) becomes (13) and as N in-
creases (and d = N for complete graphs consid-
ered here), the two boundary states |0〉, |d− 1〉
that have different mixing constitute an increas-
ingly small fraction over all states. It is thus plau-
sible to assume that the difference between the
mixers Eqs. (13),(17) and (18) is most relevant
for smallest N > 3, i.e. N = 4.

All non-zero elements in (17) and (18) are set
to unity, and we again generate initial points
starting from the all-negative-weights graph.
The numerical results in Fig. 7 show that the
performance is very similar amongst the differ-
ent mixers – the largest observed percentage
performance difference for a single instance is
about 4%. From the data we can conclude
that the hardware mixer with r = 2 performs
better on average than the normal mixer with
r = 1, which outperforms the hardware mixer
with r = 1. Overall, we can conclude from this
data that replacing the standard mixer (13) with
the hardware-specific mixers (17) and (18) is not
expected to result in a significant decrease in per-
formance.

6.1.3 Unitaries beyond mixers

Next, we specify single qudit unitaries beyond
mixers, which we will exploit in the construction
of the 2-gates in Sec. 6.2 below. For a two-level
system with levels |`〉, |`′〉 driven on resonance
with Rabi frequency Ω`,`′ , the unitary evolution
operator expressed in the {|`〉, |`′〉} basis reads
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Figure 7: Results for the different mixing Hamiltonians
given by Equations (13),(17) and (18), labelled as ‘N:
r = 1’, ‘HW: r = 1’ and ‘HW: r = 2’, respectively.
A dot is the average approximation ratio over all 50 in-
stances and the shaded area represents one standard de-
viation. The results are obtained using a complete graph
with N = 4 data set in the same way as described in
Sec. 5.

(cf. Appendix D)

U2−level
`,`′ (θ, ϕ) =

(
cos θ2 −ieiϕ sin θ

2
−ie−iϕ sin θ

2 cos θ2

)
,

(19)
where θ = 2t|Ω`,`′ |, t is the duration of the laser
pulse and Ω`,`′ = |Ω`,`′ |eiϕ.

Similarly, we can write down a general uni-
tary evolution operator for a three-level system
(so-called Λ-scheme). As we will be particu-
larly interested in performing controlled opera-
tions through driving the qudit states to a Ry-
dberg level, we shall consider a Λ-scheme where
levels |`〉, |`′〉 are coupled to a common Rydberg
state |r〉. We will further require that at the end
of the operation, there is no population in the
Rydberg state. In this case the unitary for res-
onant driving and expressed in the {|`〉, |`′〉, |r〉}
basis reads (cf. Appendix D)

U3−level
`,`′ (θ, ϕ) = −

 cos θ2 eiϕ sin θ
2 0

e−iϕ sin θ
2 − cos θ2 0

0 0 1

,
(20)

where

cos θ2 = |Ω0|2 − |Ω1|2

Ω2 , (21a)

sin θ2 eiϕ = 2Ω0Ω∗1
Ω2 (21b)

Ω =
√
|Ω0|2 + |Ω1|2 (21c)

and Ωα = |Ωα|eiφα , α = 0, 1 such that ϕ = φ0 −
φ1. Here, we have denoted Ω0 = Ω`,r,Ω1 = Ω`′,r

for simplicity. The unitary takes the form (20)
for pulses of duration t = π(2m − 1)/Ω, m ∈
N. In what follows we refer to the unitaries (19)
and (20) simply as U and we shall specify which
one is considered where appropriate. For future
convenience we denote the usual Pauli X as

X`,`′ = U`,`′(π, 0) (22)

and the phase gate (defined up to a global phase)

P`,`′(ϕ) = U`,`′(π, ϕ2)U`,`′(π, ϕ1) =
(

eiϕ 0
0 e−iϕ

)
,

(23)
where ϕ = ϕ2 − ϕ1.

6.2 2-gates
CP gate. We proceed with the construction of the
cost unitary UC , Eq. (4). Noting that the the cost
Hamiltonian (10) is given by a sum of commuting
operators acting on the graph edges, we consider
an action of the cost unitary on a single pair of
qudits. It corresponds to a controlled-phase gate
of the form

CP(γ)|`〉
∣∣∣¯̀〉 =

[
δ`,¯̀e

−iγ + (1− δ`,¯̀)
]
|`〉
∣∣∣¯̀〉. (24)

It is defined up to a global phase and δ`,¯̀ is the

Kronecker delta 4.
The key element in the construction of the CP

gate Eq. (24) is a controlled-phase unitary U act-
ing on a single level |`〉 from the qudit manifold
by coupling it to the corresponding Rydberg state
|r`〉, namely

U (1|2)
` (γ) ≡

t P`,r`(
γ
2 )

c X`,r` X`,r`

,

(25)
where the first and second qudit is the target and
control respectively (labelled as t and c) and P

4We note that according to the definitions Eqs. (4),
(9) and (10), the global phase omitted in the Eq. (24)
equals ∓γk for the edge weight w(u,v) = ±1 such that the
relative phase γ between the two-qudit states |`〉

∣∣¯̀= `
〉

and |`〉
∣∣¯̀ 6= `

〉
is given by γ = ±2γk. We also remark

that while we consider the graph edges weights w(u,v) ∈
{−1, 1}, one could implement arbitrary weights through
edge-specific phases γ → γ(u,v) = 2w(u,v)γk.
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is given in Eq. (23). Here, we have introduced
the notation U (qt|qc), where qt, qc label the tar-
get and control qudits, respectively. We can then
construct the controlled phase gate Eq. (24) ei-
ther in a manifestly symmetric way

CP(γ) =
d−1∏
`=0
U (1|2)
` U (2|1)

` , (26)

or alternatively as

CP(γ) =
[
d−2∏
`=0

CX(1|2)
`,`+1|¬`

]†
P

(1)
aux,0(γ)

[
d−2∏
`=0

CX(1|2)
`,`+1|¬`

]
,

(27)
cf. Appendix D for derivation. The gate (27)
has the advantage of reducing the cost of the gate
compared to (26) in terms of the number of hard-
ware operations (laser pulses), cf. Eq. (29) and

Sec. 7. Here, P
(1)
aux,0 is the phase gate (23) ap-

plied to the first (target) qudit and driving the
level |0〉 through an auxiliary state, which here
is not a Rydberg state. Similarly, we have in-

troduced the controlled-X gates CX(qt|qc)
`t,`′t|¬`c

where

qc denotes the control, qt the target, `c the con-
trol qudit level and `t, `

′
t the pair of target levels

being acted upon. Importantly, here the target
levels `t, `

′
t are swapped when the control qubit is

not in the state `c which is highlighted using the
negation sign in the subscript, ¬`c. We note that
for a typical hardware implementation, the choice
of `t, `

′
t is not arbitrary but upper bounded. In

the present case we shall assume |`t − `′t| ≤ 2.
The controlled-X are implemented in the stan-
dard fashion as

CX(1|2)
`t,`′t|¬`c

≡
t X`t,`′t

c X`c,r`c
X`c,r`c

,

(28)
where the X-gate acting on the target is driven
through a Rydberg level (a Λ-scheme) as de-
scribed by the Eq. (20). We also remark that
the CP gate Eq. (27) is invariant under the
exchange of the control and target qudits, i.e.
(1|2)→ (2|1).

In Sec. 7 we will be concerned with assessing
the cost of the algorithm as counted by the num-
ber of elementary 2-gate operations. To this end
we introduce the notation [G] to denote the cost
of a gate G as counted by the number of the CX

gates (28) or its equivalents in the decomposition
of G. The corresponding cost of the CP gates is
thus 5

Eq. (26) : [CP] = 2d (29a)
Eq. (27) : [CP] = 2d− 2 (29b)

SWAP gate. In order to perform the CP gate on
a pair of distant graph vertices, it is in general
necessary to bring them together by means of a
swap gate SWAPd. Several possible implementa-
tions of the SWAP gate for qudits have been pro-
posed [15, 57]. Here we shall consider the imple-
mentation of Ref. [57], which parallels the qubit
SWAP construction consisting of three consecu-
tive CX gates: SWAP2 = CX(q|q̄)CX(q̄|q)CX(q|q̄),
where we have dropped the level indices taking
|1〉 to be the control level for the qubit as cus-
tomary. The qudit version of the SWAP is given
by [57]

SWAPd = CX(q|q̄)
d CX(q̄|q)

d CX(q|q̄)
d , (30)

which is the direct generalization of the SWAP
for qubits. The qudit controlled-X CXd is defined
as

CXd|`〉
∣∣∣¯̀〉 = |`〉

∣∣∣−`− ¯̀
〉

(31)

and mod d is understood in evaluating −`− ¯̀ in
the last expression. It can be implemented as

CX(q|q̄)
d = QFT(q)

d CZ(q|q̄)
d QFT(q)

d , (32)

where

QFTd|`〉 = 1√
d

d−1∑
`′=0

ei
2π
d
``′
∣∣`′〉 (33)

is the quantum Fourier transform in the single
qudit space (i.e. a unitary operation with matrix
elements (QFTd)`′,` = exp[i(2π/d)``′]/

√
d) and

CZd is defined as

CZd|`〉
∣∣∣¯̀〉 = ei

2π
d
`¯̀|`〉

∣∣∣¯̀〉. (34)

We note that the QFTd gate is a 1-gate and can
thus be synthesized using methods of [101], simi-
larly to the mixing unitary for r > 2, cf. also [131]
for implementation of QFTd in the context of

5For a qubit, the cost of the symmetric gate Eq. (26)
can be further reduced to [CP] = d, cf. Appendix D
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multilevel atoms. To quantify the cost of the
SWAP gate, we thus focus on the CZd gate (34),
which can be implemented as

CZ(q|q̄)
d =

d−1∏
¯̀=1

X
(q̄)
¯̀,r¯̀

[
d−1∏
`=1

P(q)
`,r`

(2π
d
`¯̀
)]
X

(q̄)
¯̀,r¯̀
, (35)

which contains (d− 1)2 applications of the phase
gate P. Importantly, we note that the product in
the brackets can be executed in parallel by simul-
taneous application of the laser pulses connecting
each level |`〉, ` = 1, . . . , d−1, of the target to its
respective Rydberg level |r`〉. This is precisely an
example of the parallelization offered by the qu-
dit hardware. We thus get, in conjunction with
Eq. (30), for the total cost of the qudit SWAP

[SWAPd] = 3(d− 1). (36)

6.3 Initialisation and measurement
Initialization. The initial state (15) can be pre-
pared by initializing all atoms in the |0〉 ≡
|S,mF = −9/2〉 state by standard means of op-
tical pumping and then applying a sequence of
d− 1 unitaries (19) such that

∣∣∣+d
〉

=
[
d−1∏
`=1

U †`−1,`

(
θ`, ϕ = π

2

)]†
|0〉, (37)

where cos(θ`/2) = 1/
√
d− (`− 1). Here the uni-

tary can be implemented either via resonant or
off-resonant Raman coupling described in Sec. 6.1
for the range r = 1 and r = 2 of the mixing uni-
taries respectively.

Measurement. In order to projectively mea-
sure the quantum state after each itera-
tion of the QAOA we consider imaging the
atoms using resonance fluorescence by collect-
ing the light scattered from the strongly driven
|0〉 −

∣∣3P1, F
′ = 11/2,mF ′ = −11/2

〉
transition,

cf. Fig 6a. This has the advantage of simulta-
neously cooling the atoms in the |0〉 state while
imaging them [139], cf. also [37, 89, 114] for
related techniques. Exploiting the state-specific
detection of individual mF states, first only the
population in the |0〉 state (mF = −9/2) is be-
ing detected. In the case of negative outcome
(no population in the |0〉 state), the popula-
tion from the adjacent mF state, i.e. from |1〉
(mF = −7/2), is transferred to |0〉 by using opti-
cal pumping, or coherently via stimulated Raman

adiabatic passage and the |0〉 is imaged again.
This process is repeated until the positive detec-
tion of some qudit level |`〉. This allows for imag-
ing of all the qudit states within the expected
lifetime in optical tweezers of & 10 seconds (as
there is no active cooling of the |1〉, . . . , |d− 1〉
states during the imaging). This time is limited
mainly by off-resonant scattering of the tweezer
light and also by background gas collisions, where
the latter can be further reduced by increasing
the quality of the vacuum.

7 Processor design and gate count

Here we seek to evaluate the cost of the algo-
rithm, cf. Sec. 2 and Sec. 3, as quantified by
the gate count. As discussed in Appendix F, the
dominant errors stem mainly from the 2-gates
and we thus focus on the 2-gate count. To this
end we consider the total count Ctot of qubit prim-
itive 2-gates and specifically we will use the qubit
controlled-X [CX] as our cost unit (This choice of
counting will be useful when comparing the qu-
dit vs. qubit encodings in Sec. 7.1). Ctot is deter-
mined by (i) the topology of the graph encoding
the clustering problem, (ii) the topology of the
quantum processor and, for qubits, (iii) the en-
coding scheme, which we discuss in Sec. 7.1.

In this section we will find that taking into ac-
count the hardware considerations (i)-(iii) yields
the expected result, namely that the qudit encod-
ing is superior to the qubit one in that it yields
smaller Ctot. Readers not interested in the details
of the gate count can consult the summary in the
Table 2.

To proceed, let us first comment on 2-gates be-
yond nearest neighbours. The neutral atom and
ion based systems possess a native long-range in-
teraction, which typically decays as a power law
1/Rα with distance (α = 6 for a pair of Ryd-
berg atoms interacting through a Van der Waals
potential). Such potential gives rise to clusters
of higher connectivity on the processor, which
can lead to an improvement in performance over
processors with only nearest-neighbour interac-
tions [84]. The related scaling properties of the
quantum gates for trapped ensembles rather than
single neutral atoms have been analysed theoret-
ically in [110] and such ensembles occupying hun-
dreds of sites have been realized recently exper-
imentally [143]. Furthermore, claims have been
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made that up to 50 atoms can be connected with-
out the need of a SWAP operation [2]. In the here
considered implementation using Rydberg block-
ade and Van der Waals interaction, the price to
pay for the higher connectivity is the longer dura-
tion of the gate. Taking the basic building block
Eq. (25) of the CP gate as an example, the gate
duration is mainly given by the duration of the
P-gate applied to the target qudit. This is be-
cause while the X-gates acting on the control qu-
dit can be performed in principle arbitrarily fast
limited only by the available Rabi frequency, the
Rabi frequency Ω used to realize the P-gate has
to satisfy the blockade constraint V (R)/Ω � 1
for a given atom distance R. Since V (R) ∝ 1/R6,
for the same quality of blockade (same V (R)/Ω)

the gate time thus scales as ∝ 1/Ω ∝ R6. For
this reason and for the sake of clarity, in the
following we consider only nearest-neighbour 2-
gates and leave the algorithm hardware optimiza-
tion exploiting longer-range connectivity for fu-
ture work.

Another remark is that it is desirable to paral-
lelize the gate operations, cf. e.g. [83] for recent
realization with Rydberg atoms, to reduce the
absolute time of the algorithm run. This in prin-
ciple allows one to reduce the effect of noise such
as the background gas collisions or off-resonant
scattering from the optical traps, cf. Sec. 8. Such
parallelization however does not change the 2-
gate count and we don’t elaborate on it further.
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Processor geometry Gates for binary encoding
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2 •C3(U) =
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Table 1: Left column: Considered processor geometries in 1D (upper two rows) and 2D (lower four rows) for both the
qudits and the binary encoding. In 2D the shaded blue and red areas highlight the effective qudit (e-dit) in the binary
encoding including the considered enumeration of the qubits. Right column: The construction of the C̃P gates for
binary encoding. Construction for both q = log2 d and q 6= log2 d case is shown (based on Ref. [54]) together with
the decomposition of the multi-controlled Cq−1(U) gate for q = 4 and q = 3 (based on Ref. [17]). The unitaries V
satisfy V 2 = U and V 4 = U in the decomposition of C2(U) and C3(U) respectively [17].
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ninter
SWAP

[S̃WAP] =
= q2[SWAP2]
= 3× q2[CX]

nintra
SWAP2 [SWAP2] =

= 3q(q− 1)[SWAP2]
= 3× 3q(q− 1)[CX]

[
Cq−1(U)

]
Ctot

1D

bi
na

ry q = 2

(N−1)(N−2)
2

3× 4 3× 6 1[CX] = 1 |E| × 35−O(N)× 12
q = 3 3× 9 3× 18 5[CX] + 2[SWAP2] = 11 |E| × 98−O(N)× 27
q = 4 3× 16 3× 36 13[CX] + 12[SWAP2] = 49 |E| × 213−O(N)× 48

[SWAPd] = 3(d− 1) [CP] = 2(d− 1)

qu
di

t q = 2 9 6 |E| × 15−O(N)× 9
q = 3 21 14 |E| × 35−O(N)× 21
q = 4 45 30 |E| × 75−O(N)× 45

ninter
SWAP [S̃WAP] nintra

SWAP2
[SWAP2]

[
Cq−1(U)

]
Ctot

2D

bi
na

ry q = 2

O(N)

3× 31
3
∗ 3× 4∗ 1[CX] = 1 |E| × 17∗ +O(N)× 10∗

q = 3 3× 8∗ 3× 6∗ 5[CX] = 5 |E| × 29∗ +O(N)× 24∗
q = 4 3× 91

3
∗ 3× 122

3
∗ 13[CX] + 2[SWAP2] = 19 |E| × 65∗ +O(N)× 28∗

[SWAPd] = 3(d− 1) [CP] = 2(d− 1)

qu
di

t q = 2 9 6 |E| × 6 +O(N)× 9
q = 3 21 14 |E| × 14 +O(N)× 21
q = 4 45 30 |E| × 30 +O(N)× 45

Table 2: Gate count as per Eqs. (39) for qudits and qubit binary encoding for 1D (blue shaded lines) and 2D (red
shaded lines) processor geometries. The cost of the C̃P gate is evaluated using the circuits from Ref. [54] as well
as the standard decomposition of multi-controlled qubit gates shown in the right column of Table 1. The cost of
the S̃WAP gate is evaluated according to the qubit arrangements shown in the left column of Table 1. In 2D, it is
obtained as a weighted average over the neighbours (for q = 2, 3, 4, each e-dit has four, three and two neighbours
to which it is connected by one leg and two, three and four neighbours to which it is connected by three legs). This
might result in a fractional value of [S̃WAP] and gate counts stemming from such weighted average are denoted by a
star. The total gate count Ctot of the algorithm is indicated in the last column in purple. For the qubit encoding, Ctot
also includes the contribution 2q[CX] from (40) not listed in the Table. For complete graphs considered here, the
dominant contribution to Ctot is coming from the number of edges |E| = N(N − 1)/2 = O(N2). This is highlighted
in bold for qudits in the last column. It is apparent from Ctot that the qudit encoding is superior to the (best-case
scenario q = log2 d) binary one in all cases.

7.1 Gate count and comparison to qubits

As stated in the introduction, the use of qudits
in general offers a resource-efficient alternative to
qubit encodings and for certain problems, such
as correlation clustering, also a natural physical
platform for their implementation. To proceed
with the comparison between qudits and qubits,
we first specify the qubit encoding. In what fol-
lows, we denote by tilde a qudit-like gate acting
on the effective qudit encoded in qubits. We also
term such an effective qudit an e-dit to distin-
guish it from the physical qudit.

Effective controlled-phase gates C̃P equivalent
to (24) have been proposed in [54]. The Ref. [54]
studied the MAX-k-cut using QAOA and con-
sidered two possible encodings, a one-hot and a
binary one. The one-hot encoding seems to pro-
duce smaller 2-gate count when q 6= log2 d and
larger when q = log2 d, the precise numbers de-
pending on the graph topology [54]. Here

q = dlog2 de, (38)

is the number of qubits necessary to contain the
qudit Hilbert space as subspace such that the two
become equal when q = log2 d. On the other
hand, the one-hot encoding is more resource ex-
tensive than the binary encoding and we there-
fore choose the binary one. In the scheme of
Ref. [54] q = log2 d and q 6= log2 d correspond
to two different realizations of C̃P, which we list
in Table 1 for the reader’s convenience.

Next, we have to specify the processor topol-
ogy. The versatility of neutral atom platforms
allows in principle for arbitrary arrangements of
the atoms, which can be exploited for efficient en-
coding of the graph instance at hand. For speci-
ficity, we perform the gate count on one of the
examples of main interest, the complete graph,
for which |E| = N(N − 1)/2. Motivated by on-
going experiments [18, 19, 48, 83, 88, 116, 119],
we consider a simple 1D chain (with open bound-
aries) and a 2D regular lattice. In 2D we consider
a triangular lattice, which provides the densest
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packing of atoms. The 2-gate count is given by

qubits : Ctot = ninter
S̃WAP

[S̃WAP] + |E|[C̃P] (39a)

qudits : Ctot = ninter
SWAPd [SWAPd] + |E|[CP],

(39b)

where ninter
S̃WAP

, ninter
SWAPd count the number of

SWAPs between the e-dits and qudits respec-
tively such that each vertex has been a neigh-
bour of every other vertex at least once. In prin-
ciple we can perform the gate count for any d.
We note, that due to the C̃P gate structure for
q 6= log2 d, the total count is relatively much
higher than for q = log2 d (Table 1 of [54] gives
[C̃P] =2,70,6,206,142,78,14 for d =2,3,4,5,6,7,8,
where the values with underline correspond to
q = log2 d). By contrast, since the gate struc-
ture for qudits is the same for all d and since our
main goal here is to compare the gate count for
qudits and qubits, we focus only on the q = log2 d
case. The reason for this is that for a given ratio
Cqudits

tot /Cqubits
tot of gate counts for qudits and qubits

for q = log2 d, this ratio will be only smaller when
q 6= log2 d. In this case, the cost of C̃P can be
further decomposed as

[C̃P] = nintra
SWAP2 [SWAP2] + 2q[CX] + [Cq−1(U)],

(40)
where nintra

SWAP2
counts the number of SWAPs

within the e-dit and Cq−1(U) is the multicon-
trolled unitary performed within the target e-dit,
cf. Table 1. The unitary U in Cq−1(U) is a single
qubit gate and its particular form is not relevant
for the counting (cf. Ref. [54] for details).

1D. Let us first describe the situation in 1D.
Here, ninter

S̃WAP
= ninter

SWAPd indicates the number

of SWAPs between qudits (or e-dits) such that
each qudit (or e-dit) has been a neighbour of all
the others. Here we shall use a rather natural
choice of SWAP sequences described in [13, 78].
It consists of a repeated application of two lay-
ers of SWAPs, one performing SWAP operations
on qudit (e-dit) pairs 1 − 2, 3 − 4, . . . followed
by the other on pairs 2 − 3, 4 − 5, . . .. This
yields ninter

S̃WAP
= ninter

SWAPd = (N − 1)(N − 2)/2,

see also Appendix E. Furthermore we also have
|E| = N(N − 1)/2 such that Eq. (39b) together
with Eq. (29b) and Eq. (36) yield

Ctot = (5N − 6)(N − 1)
2 (d−1) = |E|×5(d−1)−O(N).

(41)

To analyse the qubit case, let us start with the
analysis of the Cq−1(U) gate. Ref. [85] describes
a systematic construction of Cq(U) for arbitrary
q proposing two schemes for such a construction,
one scaling exponentially and the other one poly-
nomially with q. While the polynomial scaling
is clearly favourable for large q, the actual gate
count favours the exponential scheme for q ≤ 4
considered here. We thus consider the decom-
position for C2(U) and C3(U) shown in Table 1,
proposed in the early works on quantum infor-
mation [17, 122]. The considered ordering within
the e-dit shown in Table 1 leads to the following
counts as function of q

[S̃WAP] = q2[SWAP2] (42a)
nintra

SWAP2 = 3q(q− 1). (42b)

The total gate count for qudits and e-dits and
their break down as per (39) is summarized in
Table 2.

2D. For qudits, the cost (39b) carries over to two
dimensions. For qubits, the situation is more in-
volved and we shall analyse only the specific cases
q = 2, 3, 4. In Table 1 we show a possible arrange-
ment of the e-dits including the qubit labelling
within the e-dit. We note that the effective lat-
tice geometry composed of the e-dits retains the
topology of the triangular lattice in that each e-
dit has six nearest neighbours and consequently
ninter

SWAP2
= ninter

SWAPd as in the 1D case. However
the difference with qudits is that the e-dit lattice
is “anisotropic”, namely for q = 2, 3, 4, each e-dit
has four, three and two neighbours to which it
is connected by one leg and two, three and four
neighbours to which it is connected by three legs
respectively.

We also note that the proposed tilings imple-
menting the e-dits are not necessarily unique.

In order to determine ninter
SWAP, one can apply a

generalization of the alternating SWAP sequence
from the 1D case, cf. [13], which yields a scal-
ing O(N) for the number of SWAPs between the
qudits (or e-dits). Since |E| = N(N − 1)/2 =
O(N2), this gives a subleading contribution to
the gate count and we do not elaborate on the
precise sequence further.

We are thus left with evaluating the cost of

[S̃WAP] for the e-dit SWAP and [C̃P] which takes
into account the respective e-dit and processor

Accepted in Quantum 2022-03-21, click title to verify. Published under CC-BY 4.0. 18



geometries. The summary of the costs for 2D is
given in Table 2.

As a result, we find the expected outcome,
namely that in all considered cases the gate count
is lower for qudit encoding than for qubit bi-
nary encoding, even for the best-case scenario
q = log2 d of the latter.

Here we have evaluated the gate count con-
sidering the realization of the SWAP gates via
the Rydberg interactions. A remark is that the
gate count of a sequence of consecutive SWAPs
can be further reduced by considering so-called
bridge gates, leading however only to a modest
improvement by a factor ≈ 1.5 [73]. In the con-
text of neutral atoms in optical tweezers, it would
be interesting to exploit a strength of these plat-
forms and perform the SWAP by physically ex-
changing the atoms, which for distances ∼ 5µm
can be done on the timescale of ∼ 50µs [117].

8 Errors
In this section we consider an error model used in
Ref. [11] in the theoretical analysis of a Rydberg
quantum computer and we discuss the implica-
tions of the errors for the algorithm performance.
Importantly, the error model of Ref. [11] can be
cast in the unitary evolution framework used in
our work. We comment on the actual experimen-
tal errors and how they relate to the considered
error model in Appendix F.

Unitary error model. Let us consider a set of d2

single qudit unitaries U ≡ {(ΣX)r(ΣZ)s}, where
r, s = 0, . . . , d− 1. Here ΣX = Σx + (Σx)†, Σx is
given by Eq. (12) and

ΣZ =


1 0 . . . 0

0 λ
...

...
. . . 0

0 . . . 0 λd−1

 (43)

with λ = exp(i2π/d) is the generalized Pauli
Z. For a qubit, d = 2, this reduces to U =
{1,ΣX ,ΣZ ,ΣXΣZ}. Motivated by the experi-
mental considerations, namely the fact that the
errors are dominated by the 2-gate ones, cf. Ap-
pendix F, the model consists of applying an iden-
tity with probability 1 − p2 or a unitary U ∈
U⊗2 \ {1}, with probability p2/(|U⊗2 \ {1}|) =
p2/(|U⊗2| − 1) on each pair of qudits after each

cost unitary UC = e−iHC , cf. Eq. (10). Put for-

mally, for ρ = UCρ
′U †C

ρ→ ρ with prob. 1− p2

ρ→ UρU †, U ∈ U⊗2 \ {1}, with prob. p2
|U⊗2 \ {1}|

(44)

We consider the same data sets for complete
graphs as have been used in Section 5 for N ∈
{3, 4, 5}, and use the optimized values for γ, β
and d obtained in the noise-free setting. This
way makes it possible to discard the classical op-
timization loop, saving computation time, and
allows us to focus on the performance degrada-
tion as a result of the randomization of the state
vector. It has been argued in Ref. [151] that noise
generated by dephasing, bit flip, and depolarizing
channels tends to flatten (on average) the param-
eter space energy landscape without changing its
structure. Since the error model (44) is a qudit
generalization of these types of channels, we ex-
pect the γ, β obtained in the noise-free setting to
be optimal also in the noisy setting.

The results are shown in Figure 8. For p2 small
(. 10−3), we see that the performance is hardly
affected by the noise. Once p2 increases, we enter
the regime where performance quickly degrades
until we reach the performance of the completely
randomized state. Whilst the performance at
p2 = 1 is considerably smaller than in the noise-
free setting, the approximation ratio achieved on
average is still relatively large. This is due to the
fact that d is already pre-determined: instances
with d = 1 are not affected by the noise and still
maintain a large approximation ratio. We define
the threshold noise p2,Th (threshold amount of 2-
gates gTh) as the noise level (amount of 2-gates)
for which the QAOA has lost half of its perfor-
mance as compared to random guessing, on av-
erage for all instances.

By determining the values of p2,Th from the
data in Figures 8a-c, and using that the amount
of two-qubit gates is simply pN(N − 1)/2 (with
p the QAOA depth), we plot gTh as a function
of p2 in Figure 8d. We observe that our data are
compatible with a linear dependence for gTh of
the form

gTh = κ

p2
, κ = 0.84. (45)

This naive model for the noise shows scaling simi-
lar to that of Ref. [129] – here the authors showed
that a bound on the circuit depth scales inversely
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proportional to the quantum gate error – but now
in the amount of operations instead of circuit
depth.

It is interesting to interpret the results of
Fig. 8d in terms of the achievable system sizes
and required hardware gate operations. Denot-
ing the error probability of an elementary CX-like
hardware gate as pCX we get for the total success
probability (no error) after application of |E| = g
gates on the |E| edges

psuccess = (1− p2)|E|

= (1− [CP]pCX)|E|(1− [SWAPd]pCX)O(N)

≈ (1− [CP]pCX)|E|,

where in the last relation we used that p2, pCX �
1, |E| � N while [CP] ≈ [SWAPd]. This allows
us to identify p2 ≈ [CP]pCX. Using the result
of Table 2, considering d = 8 for specificity, and
using |E| = N(N − 1)/2, we find that for p2 =
(10−2, 10−3, 10−4), pCX ≈ (10−3, 10−4, 10−5) re-
sulting in N ≈ 13, 41, 130 6.

We thus see that the inclusion of the errors
strongly limits the scaling of the algorithm to
large problem instances. We note that simi-
lar limitations of the QAOA due to experimen-
tal errors have been discussed recently in [64]
and [129]. In particular, it has been argued in
Refs. [64, 129] that hardware-native graph in-
stances, in case of Ref. [64] a simple square lat-
tice with nearest-neighbour interactions, are less
prone to errors and potentially allow to scale up
to problem sizes large enough to achieve quantum
advantage. This is due to significant simplifica-
tion of the quantum circuit, which avoids a num-
ber of extra compilation steps (such as SWAP
gates). The major downside is however that a
quantum computer hardware is, typically, not ap-
plication or instance specific.

In this respect, the neutral atom based plat-
forms seem to be particularly interesting as they
allow for implementing graph topologies beyond
simple planar ones by exploiting the atom ar-
rangements in three dimensions and the long-
range interactions. Nevertheless, as is apparent
from the results in this section, the robustness to

6A technical remark is that strictly speaking the for-
mula (45) was verified when the number of clusters d sat-
urates the number of vertices N . Keeping this in mind,
the discussed achievable system sizes should thus be con-
sidered merely as an estimate.

Figure 8: (a)-(c) Numerical results for the QAOA with a
error channel given by (44) for N = 3, 4, 5, respectively.
The plots are the average approximation ratios α over all
instances in the complete graph data sets and the shaded
areas correspond to one standard deviation. The filled
circles data points correspond to the threshold noise for
which the QAOA has lost half of its performance over
random guessing. (d) Linear fit for gTh ∝ 1/p2, indi-
vidual colours correspond to the respective data points
where p2 = p2,Th in (a), (b) and (c).

the errors is directly related to the graph topol-
ogy. Specifically, for the complete graph consid-
ered here, the errors strongly limit the scaling
even if it is native to the hardware, see also the
discussion in Sec. 9.

9 Conclusions and outlook

In this work we have addressed the problem of
solving the correlation clustering using QAOA
and a qudit quantum computer. We have specif-
ically considered a neutral atom based architec-
ture, which has the potential to offer up to ∼1000
qudits in the near future [93, 116, 119]. Here
the gates are realized through the interaction of
atoms in a highly excited electronic state, a so-
called Rydberg state. Considering specifically
the element 87Sr we have identified a suitable
level structure for the qudit, which in turn al-
lowed us to design the gates for implementing
the QAOA on the quantum processor. It is worth
emphasizing that while we have considered cor-
relation clustering, the discussed qudit gates can
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be used for the closely related MAX-k-CUT and
MAX k-VERTEX COVER problems, cf. [54]
and [28, 33, 143] respectively.

We assessed the algorithm’s performance by
numerical simulations including various opti-
mization strategies, namely restarts, optimizing
the initial points and looping over the cluster
number. Focusing specifically on complete and
Erdős-Rényi graphs of up to 7 vertices and clus-
ters we found that in all studied cases the QAOA
with depth p ≥ 2 provides approximation ra-
tios above the Swamy bound 0.7666 [134], cor-
responding to the best known classical strat-
egy (based on SDP) with performance guaran-
tees for MAXAGREE. Modifying and adopting
recently developed classical simulation methods
[91] might allow us to study larger graph in-
stances, which we leave to future work.

While this result is encouraging, the inclusion
of errors suggests that it is challenging for the
QAOA to outperform classical algorithms, cf.
Sec. 3, at least for complete graphs on near-term
noisy quantum devices. This is in agreement with
related results reported recently in Ref. [129] and
Ref. [64], where various graph instances were con-
sidered to compare the performance of the QAOA
using a superconducting quantum chip, including
the effect of the errors.

In this respect, the neutral atom based plat-
forms seem to be particularly interesting and
our work indicate possible directions in the de-
sign of experiments for benchmarking the QAOA
on correlation clustering instances. Not only do
neutral atoms allow to assemble arbitrary struc-
tures in both 2D and 3D [18, 19, 48, 117] (a
PTAS does exist for planar graphs [79], but one
could still investigate the rate of convergence),
but they also allow for native long-range inter-
actions, known to yield an advantage over quan-
tum processors featuring only nearest-neighbour
ones [84]. Such long-range interactions in turn al-
low for implementation of non-planar graphs [64]
as native geometry using even a planar arrange-
ment of atoms and at the same time avoid the
need for additional SWAP gates. One should
however keep in mind that for complete graphs,
the errors strongly limit the scaling even when
this graph topology is native to the hardware, cf.
Sec. 8. This suggests, together with the results of
Refs. [64, 129], that the robustness of (low depth)
QAOA increases with the decrease of the graph

degree. Additional improvement in the perfor-
mance might be also achieved when using multi-
qudit gates, which can further reduce the circuit
depth [76]. In this context, it would be also inter-
esting to consider the (native) realizations of unit
disk graph instances [103, 104]. Interestingly, and
to the best of our knowledge, the NP-hardness of
the correlation clustering problem on unit disk
graphs remains an open question [43, 69].

It would be highly interesting to address sys-
tematically the above listed scenarios, which we
leave for future work. It should be also em-
phasized that while achieving a practical quan-
tum advantage using the QAOA remains a chal-
lenge, constructing a qudit quantum processor is
a task worth pursuing - it constitutes an exquisite
tool for applications beyond the QAOA, allow-
ing for instance for the realization of a plethora
of condensed matter models such as the d−state
Potts and other SU(d) spin systems [20, 31, 34–
36, 39, 45, 77, 95–98, 108, 124, 148, 149].
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A Results optimizer study
We compare the performance of five different optimizers with off-the-shelf hyper-parameter settings
using the vanilla QAOA: ImFil, SnobFit and BOBYQA taken from the scikit-quant package [81]
and an implementation of COBYLA, used both as single optimizer and in conjunction with basin-
hopping (BH), both from the SciPy optimization package [5]. We consider a single instance out of our
correlation clustering data sets: the complete graph with N = 4 and all edge weights ‘−’ such that
the optimal solution corresponds to all nodes being put in different clusters. For each p ∈ {1, . . . , 5},
we generate 25 random initial points in the respective parameter space. The maximum number of
iterations for each optimizer is set to 500. Since basin-hopping has two different budgets, one for the
basin-hopping steps and one for its local optimizer, we set the maximum number of iterations by using
the number of evaluations the local optimizer (COBYLA) used in its individual run: the number of
basin-hopping steps is the rounded ratio of the budget over this number. The results for state vector
sampling (1000 samples) are given in Figure 9.

Figure 9: State vector sampling with 1000 samples. Left: found approximation ratios α for 25 random initial points
using different optimizers. Right: total number of function evaluations ‘nfev’ as a function of p. The shaded area
indicates the error in the mean, where the discrete points have been connected in order to improve the readability of
the figure. ’Best found’ indicates the best approximation ratio that was observed over all instances and optimizers.

We find that BOBYQA outperforms all other optimizers in terms of the achieved approximation
ratios, but does always use up the maximum available amount of iterations. Unfortunately, the scikit-
quant optimization package does not allow us to change the tolerance, which would allow for fairer
comparison. As far as the ratio of performance to number of function evaluations is concerned, ImFil
performs well. Even though adopting BOBYQA already potentially results in a large performance
increase compared to using COBYLA, which was used to obtain our initial results, we still observe that
a large performance difference exists between the best value found and the average performance over
different optimizer runs. In addition, note that the standard deviation is relatively large as we plot the
error in the mean in Fig. 9. This means that there is still a lot to be gained in the classical optimization
step, the most natural being the use of good initial points, followed by hyper-parameter optimization.
Good initial points will have a larger effect on the local optimization methods (in particular COBYLA

Accepted in Quantum 2022-03-21, click title to verify. Published under CC-BY 4.0. 31

https://doi.org/10.1103/PhysRevA.97.053814
https://doi.org/10.1103/PhysRevA.97.053814
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.48550/arXiv.2005.10258
https://doi.org/10.48550/arXiv.2005.10258


Figure 10: Locations of points obtained through the use of COBYLA starting from initial point x∗0, which corresponds
to an optimized point for solving the all-negative-weights graph, for N = 4 and N = 5. The number of levels is set
as d = N . Left: overview over the entire possible parameter space. Right: close-up to the smallest possible square
area that contains all optimal points. The point x∗1 has the smallest maximum Euclidean distance to other points
and x∗2 the smallest average Euclidean distance to all other points.

and BOBYQA) compared to the global optimizers (e.g. ImFil). The concentration of initial points at
p = 1 is studied in the next appendix.

B Initial points study for p = 1

In this part of the appendix we give numerical evidence that supports the conclusions of the work
by Brandão et al. [24]: initial points for different instances, belonging to similar problem classes, are
concentrated. To investigate this effect at p = 1, we run the following: we start with initial points
we obtained from the all-negative-weights graphs, for some fixed N and d, and then solve for all
50 instances in our correlation clustering data set, using COBYLA as the optimizer. The resulting
optimal points are plotted in Fig. 10: Note how all points are in the neighbourhood of our initial
points. In fact, the smallest rectangular area containing all points (indicated by the black rectangle)
takes about 0.2% of the entire possible parameter space. The plot on the right zooms in on this
rectangle, showing how the optimal points are located relative to each other. In this plot x∗0 is the
initial point, which is for both N = 4 and N = 5 positioned at the boundary of the collection of points.
This makes sense due to the structure of the graph it belongs to—the all-negative-weights graph is
itself an extreme case of the correlation clustering problem (requiring all clusters to be used). This
also indicates that other graphs might be more suitable to generate initial points.

For the same problem instance, Figure 11 shows the location of the points obtained for different N
and d in parameter space (p = 1). We observe that d = 2 is somewhat of an outsider, but again all
points fall in a rectangular area encompassing about 0.2% of the entire possible parameter space.

C Approximation ratio bound on 3-regular graphs

A recent work by Wurtz and Love [150] shows a derivation of lower bounds for QAOA depths p = 1 and
p = 2 (and a conjectured result at p = 3) on MAXCUT. In this appendix, we apply their techniques
to the correlation clustering problem on 3-regular graphs: graphs for which every node has a fixed
degree of 3. The goal is to find a lower bound for the approximation ratio α at p = 1 on 3-regular
graphs, defined as

α = max
d∈{1,...,dmax}

Fd(γ, β)
Cmax

, (46)
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Figure 11: Left: locations of optimal points obtained over the entire possible parameter space. Right: close-up of
the smallest rectangle that contains all optimal points. The number inside the point indicates the number of nodes.

where Fd(γ, β) is the expectation value of the state produced by the QAOA algorithm using d levels and
Cmax denotes the optimal objective function value for a single correlation clustering instance. Since
only graphs with degree 3 are considered, we need at most 4 clusters. Therefore, we only consider
d ∈ {1, 2, 3, 4}. Based on local optimization, we will conjecture that for 3-regular graphs G = (V,E)
initial points γ∗d , β

∗
d exist such that QAOA that loops over the clusters has an approximation ratio

larger then 0.6699, even without the classical optimization loop7. By relaxing the problem into a
linear program (LP) we can prove that this bound is at least 0.6367.

C.1 Problem setup and a lower bound for the energy
Consider an arbitrary 3-regular graph G of N(G) nodes that is not the complete graph with N = 4.
We identify for each edge 〈i, j〉 the sub-graph Gp<i,j> induced by all neighbouring edges at most p steps
away from 〈i, j〉. At p = 1 there are only three possible kinds of sub-graph structures as indicated in
Fig. 12.

Figure 12: The 3 types of sub-graphs for p = 1. The sub-graphs describe the environment of the highlighted
edge, note how only neighbouring edges are included in the sub-graph. The dotted edges indicate edges outside the
sub-graph.

Since all sub-graph types have 5 edges, we have a total of 3 · 25 = 96 possible sub-graphs when we
only consider weights wu,v ∈ {−1,+1}. However, by symmetry arguments we can reduce the total
number of weighted sub-graphs we have to consider: if reordering the edge labels results in the same
graph under any rotation, it will look the same to the QAOA. We define three sets of sub-graphs
gi, i ∈ {1, 2, 3}, representing all 3-regular sub-graph structures with 6, 5 and 4 nodes respectively (see
Figure 12), such that for every sub-graph λ ∈ gi there exists no other graph λ′ ∈ gi that is equivalent

7Our derivation does not include the possibility that G is the complete N = 4 graph, which is not neccesary as it
cannot be extended.
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in the QAOA setting. Our total set of possible sub-graphs is then S = g1∪g2∪g3. We now decompose
our graph G into sub-graph environments λ ∈ S for which the multiplicity of each λ is Nλ(G). Since
we have such a sub-graph environment for every edge, we must have that the sum over all Nλ(G) is
equal to the total number of edges 3N(G)/2. For a single edge 〈u, v〉 with sub-graph environment λ,
denoted as 〈u, v〉 → λ, the contribution to the expectation value is given by

fd,〈u,v〉→λ(βd, γd) = 〈βd, γd|w〈u,v〉Vd|βd, γd〉. (47)

Note that Eq. (47) only contains terms that operate within λ. The expectation value of the algorithm
with a maximum of k clusters at p = 1 for some βd, γd is given by

Fd(βd, γd) =
∑
λ

Nλ(G)fd,〈u,v〉→λ(βd, γd). (48)

We must also have that this is always smaller than or equal to the expectation value using the best
values of βd, γd

Fd,max = max
βd,γd

Fd(βd, γd) ≥
∑
λ

Nλ(G)fd,〈u,v〉→λ(βd, γd), (49)

providing us with a lower bound on the expectation value of the algorithm Fd,max at a given d.

C.2 Upper bound on the number of agreements
We are now faced with the task of finding an upper bound on Cmax. A naive bound would be the total
number of edges, but we can do better by considering the same argument Wurtz and Love used to
determine an upper bound for MAXCUT [150]. Consider the graph G, which is a collection of Nλ(G)
disconnected sub-graphs Gp〈i,j〉 for each edge in G. Since the largest sub-graph has only 64 feasible
solutions, a brute-force method can be used to find the ratio between the optimal objective function
value and the number of edges for every sub-graph λ, which we will call cλ. Since all sub-graphs
are isolated (i.e. not connected to each other), the global fraction of agreements to edges is equal
to the average fraction over each sub-graph. However, we have several edges belonging to different
disjoint sub-graphs in G that are actually the same edge in G. In this case, we can have that for
both sub-graphs a clustering exists for which the edge contributes to the objective value, but that the
required clustering is different in both sub-graphs. As a result, we have that the objective function
value of G is bounded from above by

Cmax ≤
∑
λ

Nλ(G)cλ. (50)

C.3 Constructing the hardest graph
Since we have a lower bound for the algorithm’s expectation value and an upper bound for the optimal
objective function value, the approximation ratio α is bounded from below by

α(G) ≥ max
d

∑
λNλ(G)fd,λ(γd, βd)∑

λNλ(G)cλ
. (51)

The worst case approximation ratio is then given by the hardest graph G = G∗, which corresponds
to some combinations of Nλ(G∗) ∈ Z0 for all sub-graphs λ. However, not all combinations of Nλ(G)
correspond to a valid graph, as was already noted by Farhi et al. [50]. For now, we will only consider
the structure of the graph and not take the feasibility of certain weight combinations into account.
First, we note that for every edge in sub-graph g3 there must be at least 4 other edges that have
the environment corresponding to sub-graph g2. Also, we have that the ‘triangle’ of g2 and ‘crossed
square’ of g3 cannot share the same vertex, which means that the number of triangular edges and
crossed square edges must be smaller than the number of nodes N(G). Our final constraints are that
all Nλ(G) are non-negative integers and must sum up to 3N(G)/2. We define nλ(G) ≡ Nλ(G)/N(G)
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such that we can relax the integer constraint in the limit of large N(G), and obtain the following
Minimax Linear Fractional Program:

min
nλ(G):λ∈S

max
d

∑
λ nλ(G)fd,λ(γd, βd)∑

λ nλ(G)cλ
s.t.

∑
nλ(G):λ∈g2

nλ(G)− 4
∑

nλ(G):λ∈g3

nλ(G) ≥ 0

−
∑

nλ(G):λ∈g2

nλ(G) ≥ −1

∑
nλ(G):λ∈S

nλ(G) = 3
2

nλ(G) ≥ 0 for all λ ∈ S

(52)

Equation (52) is in the form of a generalized fractional program, which is not reducible to a linear pro-
gram (LP) which can be solved efficiently. However, there exist linear relaxation bounding techniques
that do allow for global optimization up to some error ε. We have performed initial experiments with
one of those techniques [75], but were not able to achieve desirable results so far due to the difficulties
in approximating our objective function. However, we can construct two related LP formulations that
upper and lower bound the value of α. Let us define the feasible region C such that x ∈ C when it
satisfies the constraints of (52).

1. Take the number of edges as the upper bound instead of the fractional objectives (50), i.e. we let
cλ → 1 for all λ. Under this relaxation we can write (52) as the following LP:

min α

s.t.
∑
λ

nλ(G)fd,λ(γd, βd) ≤
3
2α for all d

nλ(G) ∈ C, α ∈ R

(53)

The solution of (53) is a lower bound to the actual bound, as sub-graphs that originally had
cλ = 0.8 now contribute too much to the upper bound of the optimal objective function value (50).

2. Similarly, we can also assume that only sub-graphs for which a perfect clustering exists contribute
to the construction of the most difficult graph. Define the set S′ = {λ|λ ∈ S, cλ = 1} to be such
a set. Since S′ ⊂ S, the resulting solution provides an upper bound to the best value of α that
we can find for λ ∈ S.

min α

s.t.
∑
λ

nλ(G)fd,λ(γd, βd) ≤
3
2α for all d

nλ(G) ∈ C, α ∈ R, λ ∈ S′

(54)

All LPs will be solved by CVXOPT contained in the package lpsolvers [29] for Python.

C.4 Iterative procedure for determining the bound

The minimax optimization problem gives us a method to determine the hardest instance G∗, given
that we fix the parameters γ = (γ1, γ2, γ3, γ4), β = (β1, β2, β3, β4). But how do we choose the values
of these parameters? As one would normally do with QAOA, a classical optimization loop can be
adopted. First, we choose some initial values for γ, β and calculate fd,λ(γd, βd) for all sub-graph
environments λ and all d ∈ {1, 2, 3, 4}. Next, we construct the hardest graph G∗ by solving (52), (53)
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or (54). Instead of minimizing over nλ whilst keeping γ, β fixed, in the next step we now fix nλ and
try to maximize the objective over γ, β, i.e., we want to

max
γd,βd

∑
λ nλ(G)fd,λ(βd, γd)∑

λ nλ(G)cλ
s.t. γd, βd ∈ [0, 2π),

(55)

for all d ∈ {1, 2, 3, 4}. For these new values of γ∗, β∗, there might exist some other graph G∗∗ that is
more difficult than the one we originally obtained. After we obtained G∗∗ we can again try to find new
parameters β∗∗, γ∗∗. This suggests the use of an iterative procedure for establishing the bound. We
do not know whether this procedure converges, but it doesn’t necessarily have to: any combination of
γ, β has its own lower bound that holds specifically for these parameters, and can therefore be used as
our result. Convergence would only suggest something about the tightness of this bound, guaranteed
global convergence would mean that no better values of γ, β exist. In our iterative procedure, the best
parameter combinations we found are listed in Table 3:

d = 1 d = 2 d = 3 d = 4
γ∗d − 2.857 2.773 2.682
β∗d − 0.4833 0.1310 0.1435

Table 3: Parameter values for different d at which we were able to obtain the results of Theorem C.1 and Conjecture
C.1. At d = 1 the algorithm has only one state and hence no parameters.

For the parameter combinations in Table 3, (53) can be solved to an arbitrary precision, which
establishes the proof of the following theorem:

Theorem C.1. For 3-regular graphs G = (V,E), where G is not the complete N = 4 graph, ini-
tial points γ∗d , β

∗
d exist such that at p = 1 the QAOA that loops over the clusters gives a 0.6367-

approximation algorithm, even without the classical optimization loop.

However, as stated before, this bound is too strict as the objective function of G is overestimated.
Using COBYLA as a local optimizer, we numerically observed that solving (52) never resulted in a
bound lower than 0.6699. This is equal to the upper bound we find by solving (54) (also 0.6699).
Since COBYLA does not guarantee a global minimum and (54) only considers a subset of all possible
graphs, we can only conjecture that this is the actual lower bound:

Conjecture C.1. For 3-regular graphs G = (V,E), where G is not the complete N = 4 graph,
initial points γ∗d , β∗d exist such that at p = 1 the QAOA that loops over the clusters gives a 0.6699-
approximation algorithm, even without the classical optimization loop.

For this particular combination of sub-graphs belong to the hardest graph G∗, the classical opti-
mization step actually does not make much of a difference: our results show that solving (55) with
G = G∗ results in

max
γd,βd

max
d

∑
λ nλ(G∗)fd,λ(γd, βd)∑

λ nλ(G∗)cλ
≈ 0.674,

which is only a small improvement on the conjectured bound. This shows the quality of these values of
γ∗, β∗ (as well as the hardness of the graph G∗). Additionally, this also provides further indication that
QAOA, when having access to good initial points, can also be used without the classical optimization
step [24, 130].

C.5 Performance bounds for p > 1?
Unfortunately, we do not observe evidence for the existence of a trivial graph hierarchy as Wurtz
and Love proved (and conjectured) for MAXCUT at p ≤ 2 (p > 2) [150]. In fact, when we
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Figure 13: Scheme of a driven three-level system in a so-called Λ-configuration. Two qudit states |`〉, |`′〉 of energies
ω`, ω`′ are coupled with laser light of frequencies ωL

` ,ωL
`′ and Rabi frequencies Ω`,r,Ω`′,r to a Rydberg state |r〉 of

energy ωr. The Rydberg state can be additionally shifted by energy V (R) if an atom at distance R is excited to a
Rydberg state (we recall we use ~ = 1).

consider their large loop conjecture [150] for our problem, we find that for our used γ, β we obtain
a worst-case approximation ratio of α = 0.693, which is significantly larger than the bounds in
Theorem C.1 and Conjecture C.1. Therefore, we do not conjecture the structure of the most
difficult graph at any p, which would ease the determination of lower bounds at larger p. If
we are to use the same method as we used for p = 1, we will have to consider of the order of
123 · 213 ≈ 106 different sub-graphs (not taking symmetries into account). We can reduce this number
by exploiting symmetries, but since determining the energy of the largest sub-graph (14 nodes) is
computationally very expensive we do not attempt to determine bounds for p > 1. In fact, a back-of-
the-envelope estimation to the amount of computing hours needed to execute such a computation –
again not utilizing symmetries – shows that we would need on the order of 10 million computing hours.

D Details of the experimental building blocks
D.1 Dynamics of a driven three-level system
Here we briefly review the standard derivation of the unitaries Eqs. (19),(20). Let us consider the
level scheme depicted in Fig. 13. Two qudit states |`〉, |`′〉 of energies ω`,ω`′ are coupled with lasers of
frequencies ωL` ,ωL`′ and Rabi frequencies Ω`,r,Ω`′,r to a Rydberg state |r〉 of energy ωr. Furthermore,
we allow for the Rydberg state to be shifted by energy V if a nearby atom is in a Rydberg state
(V = V (R) = C6/R

6 for the atoms separated by a distance R and C6 is the Van der Waals coefficient,
cf. Sec. 6). Within the rotating wave approximation and in the frame where the levels |`〉, |`′〉 rotate
at the laser frequencies ω`, ω`′ respectively [118, 126], the corresponding Hamiltonian reads

H =
∑
j=`,`′

Ωj,r|j〉〈r|+ H.c.+ ∆j |j〉〈j|+ V |r〉〈r|. (56)

Here ∆j = ωLj − (ωr − ωj) is the single-photon detuning between the qudit state j = `, `′ and the
Rydberg state |r〉 (note our sign convention, where ∆j < 0 refers to a red-detuned laser beam).
Written in the {|`〉, |`′〉, |r〉} basis, the Hamiltonian (56) is

H =

∆` 0 Ω`,r

0 ∆`′ Ω`′,r

Ω∗`,r Ω∗`′,r V

. (57)

The associated unitary operator U = e−itH can in principle be obtained analytically by diagonalizing
(57), leading to a cubic equation for the eigenvalues. The situation simplifies at two-photon resonance
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∆` = ∆`′ = 0. In the limit of large interaction, V →∞, we get

U =

1 0 0
0 1 0
0 0 e−iV t

. (58)

Denoting Ω0 = Ω`,r,Ω1 = Ω`′,r for the ease of notation, the |r〉〈r| element of U for a general V reads

Urr = e−
1
2 itV

cos
(1

2 t
√
V 2 + 4Ω2

)
−
iV sin

(
1
2 t
√
V 2 + 4Ω2

)
√
V 2 + 4Ω2

, (59)

where

Ω =
√
|Ω0|2 + |Ω1|2. (60)

Requiring that the Rydberg population returns to zero at the end of the evolution, if it was initially
unpopulated, is equivalent to |Urr| = 1. This leads to the condition

t = 2mπ√
V 2 + 4Ω2

, m ∈ N. (61)

Specifically, in the absence of interaction (V = 0) and for m odd we get the expression Eq. (20)

U3−level
`,`′ = −

 cos θ2 eiϕ sin θ
2 0

e−iϕ sin θ
2 − cos θ2 0

0 0 1

,
with θ and ϕ defined in Eqs. (21).

The unitary Eq. (19) is obtained in an analogous way when considering a two-level system with
levels |`〉, |`′〉 coupled by a laser with Rabi frequency Ω`,`′ and described by the Hamiltonian

H = Ω`,`′ |`〉
〈
`′
∣∣+ H.c.+ ∆

∣∣`′〉〈`′∣∣, (62)

where U = e−itH is again evaluated on resonance ∆ = 0.

D.2 Derivation of the qudit controlled-phase gates

In this section we describe a systematic construction of the qudit controlled-phase gates Eqs. (26) and
(27).

D.2.1 On qudit controlled-phase gate Eq. (26)

Let us start with the gate (26) acting on a qubit, d = 2. First we note that the action of the unitary

U (2|1)
0 corresponds to

U (2|1)
0 |`〉

∣∣`′〉 =
{

ei
γ
2 |`〉|`′〉 if (`, `′) = (1, 0)
|`〉|`′〉 otherwise.

(63)

It then follows that for a qubit, the controlled-phase gate expressed in the basis {|00〉, |01〉, |10〉, |11〉}
reads

CP(γ2 ) = U (2|1)
0 U (2|1)

1 = diag(1, eiγ/2, eiγ/2, 1) (64)

(in this case, an alternative sequence U (1|2)
0 U (2|1)

0 [or U (2|1)
0 U (1|2)

0 ] yields the same result). Furthermore,
the cost of the controlled-phase gate (64) is [CP] = 2 = d.

Motivated by the construction in Eq. (64), we next wish to extend it to qutrits. Here the situation

becomes slightly more involved. Observing that the gate U (qt|qc)
` is always diagonal, i.e. introducing
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at most a phase for each element |`〉|`′〉 of the two-qutrit system, we introduce the following graphical
notation for a representation of a general diagonal gate acting in the two-qutrit space

U →
22

02 20 21 12
1000 1101

, (65)

where the labels on the right-hand side denote the coordinates of the diagonal element 〈``′|U|``′〉 of
U . Since U is diagonal with elements, which are either 1 or a pure phase eiϕ, we shall use the notation
• for 1 and ϕ for the pure phase for easier readability. With the help of (65), we can list the action of

the possible six unitaries U (qt|qc)
` acting on the two qutrits:

U (1|2)
2 =

•
• γ/2 γ/2 •

•• ••

U (2|1)
2 =

•
γ/2 • • γ/2

•• ••

U (1|2)
1 =

•
• • • γ/2

γ/2• ••

U (2|1)
1 =

•
• • γ/2 •

•• •
γ/2

U (1|2)
0 =

•
γ/2 • • •

•• •
γ/2

U (2|1)
0 =

•
• γ/2 • •

γ/2• ••

. (66)

It then follows that the controlled-phase gate can be obtained by concatenation of all the gates in (66)

CP(γ) = U (1|2)
2 U (2|1)

2 U (1|2)
1 U (2|1)

1 U (1|2)
0 U (2|1)

0 =

•
γ γ γ γ

γ
• •

γ

, (67)

which corresponds to Eq. (24) up to a global phase. It is then a straightforward exercise to verify
that the manifestly symmetric form suggested by (67) generalizes to higher d yielding the expression
(26). In fact, it also applies to a qubit, yielding the cost [CP] = 4 = 2d, which is twice as large as
that of (64). For the ease of exposition and compactness of notation, and motivated by the fact that
we are mainly interested in applications with d > 2, we have kept the controlled-phase gate (26) also
for qubits in the main text.

D.2.2 On qudit controlled-phase gate Eq. (27)

To understand the logic behind the construction of (27), it is instructive to work out a specific example
and we shall consider the simplest case beyond qubit, the qutrit. To appreciate the role of the qudit
CX gates in (27), we focus specifically on the equal-state elements |`〉|`〉 of the two-qutrit system. The
evolution of these elements under the action of the controlled-phase gate (27) can be symbolically
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written as

|22〉
CX(1|2)

1,2|¬1−�=======�−
CX(1|2)

1,2|¬1

|12〉
CX(1|2)

0,1|¬0−�=======�−
CX(1|2)

0,1|¬0

eiγ |02〉←↩ P (1)
0 (γ)

|11〉 −�=======�− |11〉 −�=======�− eiγ |01〉←↩ P (1)
0 (γ)

|00〉 −�=======�− |00〉 −�=======�− eiγ |00〉←↩ P (1)
0 (γ). (68)

Here, the CX gates (listed only in the first line to avoid cluttering) act in the direction indicated by
the arrows. We thus see that the purpose of the CX gates is to bring the equal state elements to the

elements of the form |0`〉, ∀`, i.e. CX(1|2)
0,1|¬0CX(1|2)

1,2|¬1|``〉 → |0`〉, ` = 0, 1, 2. Since there are at most

three states of the form |0`〉, the states |02〉, |01〉, |00〉 on the right of (68) exhaust all such states. The

phase gate P
(1)
0 then imprints a phase γ to all these states, which is highlighted in red, and acting

with the CX gates backwards yields the controlled-phase gate (27). Similarly to the construction in
Sec. D.2.1 above, it is straightforward to verify that the scheme (68) holds also for higher d.

E Simulating complete graphs using only nearest-neighbour interactions

For first experiments, it might be prudent to focus on problem instances where the problem graph
matches the topology of the quantum computer well. Our simulations considered complete graphs,
so for those it is natural to ask: How many swap operations are required to let a limited-interaction
quantum computer execute the algorithm on a complete graph? Or, if the hardware allows swaps on
distinct nearest-neighbour pairs of qudits to be performed in parallel, how many layers of swaps?

We can construct a simple sequence of swaps that achieves this task using not too many layers:

Proposition E.1. There exists a sequence of swaps such that the complete graph can be simulated on
a line graph in n− 2 layers of swaps. The total swap count for this protocol is (n−1)(n−2)

2 .

Proof. First assume n is even (the argument follows the same structure if n is odd). The sequence
will be generated by alternating the two following sets of swaps: π = {(1, 2), (3, 4), . . . , (n − 1, n)},
σ = {(2, 3), (4, 5), . . . , (n− 2, n− 1)}. First observe what happens when applying π and σ to a qudit
starting in an odd position i. If i 6= n − 1, this qudit will move to i + 1 because of application of π,
and then to i+ 2 by σ. If i = n− 1, the qudit will move to position n. Similarly, for a qudit starting
in even position j will move to position j−2, except that the qudit at position 2 will move to position
1.

It is easily checked that after n− 2 layers of swaps, all pairs of qudits have been nearest-neighbours
at some stage of the process. �

For a more thorough analysis of swapping sequences for executing all-to-all interactions, see also
Ref. [13] and Ref. [78], where variants of the previous construction are analysed in-depth.

We can easily see that the previous strategy is close to optimal, and that no strategy can exist that
is much better: by a simple counting argument the number of layers of swaps required to enable all
interactions of a complete graph on a line could not be much lower. This motivates us to look for the
corresponding lower bound.

Proposition E.2. Consider a quantum computer for which the graph of possible interactions is a
line of n qudits. Then at least 1

2
(n

2
)
− o(n) SWAP gates are required to enable all-to-all interactions.

Additionally, at least n
2 − 1 layers of SWAP gates are required.
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Figure 14: Fidelities (72), (73) and (74) [solid orange, blue and green lines] as a function of the 2-gate error p2, cf.
Eqs. (44) and (75), for |ψin〉 =

∣∣+2〉⊗2 and CP gate phase γ = π/2. The approximate agreement between Fopen
and Ferr for small values of p2 was obtained by setting η ≈ 1.5 in (75).

Proof. We can lower bound the number of necessary swaps by a simple counting argument: The
complete graph has

(n
2
)

edges, so that number of interactions will be required. A line of n qubits has
n − 1 edges, which is how many interactions are possible before the first SWAP gate. Next, every
SWAP gate gives two qubits a new neighbour, enabling at most two new interactions. The required
swap count therefore is at least 1

2
[(n

2
)
− (n− 1)

]
.

For the number of layers, note again between a layer of SWAP gates at most n−1 nearest-neighbour
interactions are possible. This implies a lower bound of (n2)

n−1 = n
2 of layers, hence n

2 −1 layers of SWAP
gates to be able to have all interactions. �

F On experimental errors

The gate errors for Rydberg atoms have been analysed extensively, e.g. in [111], and verified experi-
mentally, e.g. in [88]. The total error budget consists of various contributions including the collisions
of the atoms with background gas, phase and intensity laser noise, light scattering from both the
trapping and resonant lasers operating the processor, spurious level shifts from fluctuating electric
and magnetic fields or atom motion in the tweezer traps. A detailed analysis of the individual contri-
butions of these error sources goes beyond the scope of the present work. Given that the total 2-gate
error dominates over the 1-gate one [111] and is one of the bottlenecks for scalability across different
platforms, we consider only the 2-gate error. Specifically, we consider the error due to the spontaneous
decay from the Rydberg levels.

Let us start with a brief overview of the situation and let us consider P as the qudit manifold
(we recall we consider the excitation to a Rydberg state as a resonant two step process through
the long-lived P manifold, cf. Sec. 6). For the corresponding Rydberg manifold |Ry〉 =

∣∣n3S1
〉
, the

Rydberg atom decays approximately with branching ratios ≈1:4 to the (np)3PJ and (5p)3PJ manifolds
respectively, where n > 5. Out of the decay to (5p)3PJ, it branches further with ratios ≈1:3:5 to the
J = 0, 1, 2 manifolds and then further among the F−manifolds and the respective mF states (allowed
by the selection rules). Consequently, the probability of the Rydberg state to decay back to the qudit
manifold (here

∣∣3P2
〉
) – but not necessarily to the same qudit state – is ≈ 0.4 [140, 141].

The complete dynamics can be described by the standard means of a master equation for amplitude
decay including all the decay channels. However, since the probability to decay outside the qudit
manifold & 0.6, we consider a simplified dynamics of a pair of interacting qudits q = 1, 2 given by

ρ̇ = i[ρ,H] + Γ
2
∑
q=1,2

d−1∑
`=0

2σ(q)−
` ρσ

(q)+
` − {σ(q)+

` σ
(q)−

` , ρ} (69)

Accepted in Quantum 2022-03-21, click title to verify. Published under CC-BY 4.0. 41



where σ(q)+
` =

∣∣∣r(q)
`

〉
〈aux|, {·, ·} is the anticommutator and a single auxiliary level |aux〉 is used to

model the decay at rate Γ outside the qudit manifold.
We seek to compare the effect of the realistic errors described by the master equation (69) to the

unitary error model introduced above. Let us denote

ρid ≡ CP|ψin〉〈ψin|CP† (70)

the ideal state obtained upon an action of the qudit controlled-phase gate (24) on some pure state
|ψin〉. We also define the fidelity between two quantum states with density matrices ρ, σ as usual,

F (ρ, σ) = Tr
[√√

ρσ
√
ρ

]
. (71)

Next, we define the average fidelity of a state corresponding to the error model (44) as

Ferr(p2) = (1− p2) + p2
|U⊗2 \ {1}|

∑
U∈U⊗2\{1}

F
(
UρidU

†, ρid
)
. (72)

Similarly, denoting the density matrix resulting from the open dynamics given by the master Eq. (69)
as ρopen, we define the fidelity

Fopen = F (ρopen, ρid) (73)

and the average fidelity between ρopen and the states generated by (44)

Ferr−open = (1− p2)F (ρid, ρopen) + p2
|U⊗2 \ {1}|

∑
U∈U⊗2\{1}

F
(
UρidU

†, ρopen
)
. (74)

The resulting fidelities depend on |ψin〉 and they in principle vary in the course of the algorithm.
Furthermore, there is no direct unambiguous identification between the the error probability p2 of the
error model (44) and that of the open dynamics (69). Denoting the gate time of the cost unitary (27)
as tCP, the decay probability of an excited atom ∝ 1− e−ΓtCP . This motivates a parametrization

p2 = 1− e−ηΓtCP , (75)

where we have introduced a phenomenological factor η.
For illustration, in Fig. 14 we show the fidelities (72), (73) and (74) as a function of the error

probability p2, cf. Eq. (44), for the “isotropic” initial state |ψin〉 =
∣∣+2〉⊗2

,
∣∣∣+d

〉
= 1/

√
d
∑d−1
`=0 |`〉.

Denoting PQ the projector on the qudit subspace, Q = P, we have also verified that the state
evolution subject to the open dynamics (69) satisfies to a good accuracy PQρopenPQ ≈ e−ΓtCPρid.
This corresponds well to the naive guess that the resulting density matrix is just the rescaled ideal
matrix ρid due to the decay with rate Γ outside the qudit subspace.

In summary, while the error model (44) seems to capture qualitatively the decrease of the state
fidelity, it clearly cannot account for the dynamics outside the qudit subspace and more rigorous
analysis of the errors in the context of the QAOA is desirable, see also [66] for related developments.
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