37 research outputs found

    A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant staphylococcus aureus pandemic

    Get PDF
    The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens

    Overexpression, solubilization and refolding of a genetically engineered derivative of the penicillin-binding protein 3 of Escherichia coli K12.

    Full text link
    Replacement of the amino-terminal 40-amino-acid region of the 588-amino-acid precursor of the membrane-bound penicillin-binding protein 3 (PBP3) by the decapeptide MKGKEFQAWI was carried out by altering the amino-coding end of the ftsI gene. Insertion of the modified gene into a runaway-replication plasmid under the control of a fused lpp promoter and lac promoter/operator, resulted in the overexpression by Escherichia coli of the modified PBP3 (designated PBP3**) in the cytoplasm. About 80% of the accumulated PBP3** underwent sequestration in the form of insoluble protein granules that were isolated by cell breakage or cell lysis. After selective removal of contaminants by an EDTA-lysozyme/DNase (deoxyribonuclease)/Nonidet extraction, treatment of the granules with guanidinium chloride followed by dialysis against buffer containing 0.5 M NaCl yielded a refolded, water-soluble PBP3**, which, upon chromatography on Superose 12, exhibited the expected 60,000 molecular mass. The refolded PBP3** bound benzylpenicillin in a 1 to 1 molar ratio, was highly sensitive to aztreonam and showed the same degree of thermostability, in terms of penicillin-binding capacity, as the parent, membrane-bound PBP3, suggesting that protein refolding occurred with formation of the correct intramolecular interactions. Two to three mg of refolded PBP3** can be obtained from 1 litre of culture of the overproducing strain

    The Catalytic, Glycosyl Transferase and Acyl Transferase Modules of the Cell Wall Peptidoglycan-Polymerizing Penicillin-Binding Protein 1b of Escherichia Coli

    Full text link
    The penicillin-binding protein (PBP) 1b of Escherichia coli catalyses the assembly of lipid-transported N-acetyl glucosaminyl-beta-1, 4-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-(L)-meso-diaminopimelyl+ ++- (L)-D-alanyl-D-alanine disaccharide pentapeptide units into polymeric peptidoglycan. These units are phosphodiester linked, at C1 of muramic acid, to a C55 undecaprenyl carrier. PBP1b has been purified in the form of His tag (M46-N844) PBP1bgamma. This derivative provides the host cell in which it is produced with a functional wall peptidoglycan. His tag (M46-N844) PBP1bgamma possesses an amino-terminal hydrophobic segment, which serves as transmembrane spanner of the native PBP. This segment is linked, via an congruent with 100-amino-acid insert, to a D198-G435 glycosyl transferase module that possesses the five motifs characteristic of the PBPs of class A. In in vitro assays, the glycosyl transferase of the PBP catalyses the synthesis of linear glycan chains from the lipid carrier with an efficiency of congruent with 39 000 M-1 s-1. Glu-233, of motif 1, is central to the catalysed reaction. It is proposed that the Glu-233 gamma-COOH donates its proton to the oxygen atom of the scissile phosphoester bond of the lipid carrier, leading to the formation of an oxocarbonium cation, which then undergoes attack by the 4-OH group of a nucleophile N-acetylglucosamine. Asp-234 of motif 1 or Glu-290 of motif 3 could be involved in the stabilization of the oxocarbonium cation and the activation of the 4-OH group of the N-acetylglucosamine. In turn, Tyr-310 of motif 4 is an important component of the amino acid sequence-folding information. The glycosyl transferase module of PBP1b, the lysozymes and the lytic transglycosylase Slt70 have much the same catalytic machinery. They might be members of the same superfamily. The glycosyl transferase module is linked, via a short junction site, to the amino end of a Q447-N844 acyl transferase module, which possesses the catalytic centre-defining motifs of the penicilloyl serine transferases superfamily. In in vitro assays with the lipid precursor and in the presence of penicillin at concentrations sufficient to derivatize the active-site serine 510 of the acyl transferase, the rate of glycan chain synthesis is unmodified, showing that the functioning of the glycosyl transferase is acyl transferase independent. In the absence of penicillin, the products of the Ser-510-assisted double-proton shuttle are glycan strands substituted by cross-linked tetrapeptide-pentapeptide and tetrapeptide-tetrapeptide dimers and uncross-linked pentapeptide and tetrapeptide monomers. The acyl transferase of the PBP also catalyses aminolysis and hydrolysis of properly structured thiolesters, but it lacks activity on D-alanyl-D-alanine-terminated peptides. This substrate specificity suggests that carbonyl donor activity requires the attachment of the pentapeptides to the glycan chains made by the glycosyl transferase, and it implies that one and the same PBP molecule catalyses transglycosylation and peptide cross-linking in a sequential manner. Attempts to produce truncated forms of the PBP lead to the conclusion that the multimodular polypeptide chain behaves as an integrated folding entity during PBP1b biogenesis

    Differential Functionalities of Amphiphilic Peptide Segments of the Cell-Septation Penicillin-Binding Protein 3 of Escherichia Coli

    Full text link
    The class B M1-V577 penicillin-binding protein (PBP) 3 of Escherichia coli consists of a M1-L39 membrane anchor (bearing a cytosolic tail) that is linked via a G40-S70 intervening peptide to an R71-I236 non-catalytic module (containing the conserved motifs 1-3) itself linked via motif 4 to a D237-V577 catalytic module (containing the conserved motifs 5-7 of the penicilloyl serine transferases superfamily). It has been proposed that during cell septation the peptidoglycan crosslinking activity of the acyl transferase module of PBP3 is regulated by the associated M1-I236 polypeptide itself in interaction with other components of the divisome. The fold adopted by the R71-V577 polypeptide of PBP3 has been modelled by reference to the corresponding R76-S634 polypeptide of the class B Streptococcus pneumoniae PBP2x. Based on these data and the results of site-directed mutagenesis of motifs 1-3 and of peptide segments of high amphiphilicity (identified from hydrophobic moment plots), the M1-I236 polypeptide of PBP3 appears to be precisely designed to work in the way proposed. The membrane anchor and the G40-S70 sequence (containing the G57-Q66 peptide segment) upstream from the non-catalytic module have the information ensuring that PBP3 undergoes proper insertion within the divisome at the cell septation site. Motif 1 and the I74-L82 overlapping peptide segment, motif 2 and the H160-G172 overlapping peptide segment, and the G188-D197 motif 3 are located at or close to the intermodule junction. They contain the information ensuring that PBP3 folds correctly and the acyl transferase catalytic centre adopts the active configuration. The E206-V217 peptide segment is exposed at the surface of the non-catalytic module. It has the information ensuring that PBP3 fulfils its cell septation activity within the fully complemented divisome
    corecore