29 research outputs found

    Standard wound management versus negative-pressure wound therapy in the treatment of adult patients having surgical incisions for major trauma to the lower limb — a two-arm parallel group superiority randomised controlled trial : protocol for Wound Healing in Surgery for Trauma (WHIST)

    Get PDF
    Introduction Patients with closed high-energy injuries associated with major trauma have surprisingly high rates of surgical site infection in incisions created during fracture fixation. One factor that may reduce the risk of surgical site infection is the type of dressing applied over the closed surgical incision. In this multicentre randomised clinical trial, negative-pressure wound therapy will be compared with standard dressings with outcomes of deep infection, quality of life, pain and disability. Methods and analysis Adult patients presenting to hospital within 72 hours of sustaining major trauma, requiring a surgical incision to treat a fractured lower limb, are eligible for inclusion. Randomisation, stratified by trial centre, open/closed fracture at presentation and Injury Severity Score (ISS) ≤15 versus ISS ≥16 will be administered via a secure web-based service using minimisation. The random allocation will be to either standard wound management or negative-pressure wound therapy. Trial participants will usually have clinical follow-up at the local fracture clinic for a minimum of 6 months, as per standard National Health Service practice. Diagnosis of deep infection will be recorded at 30 days. Functional, pain and quality of life outcome data will be collected using the Disability Rating Index, Douleur Neuropathique Questionnaire and Euroqol - 5 Dimension - 5 level (EQ-5D-5L) questionnaires at 3 months and 6 months postinjury. Further data will be captured on resource use and any late postoperative complications. Longer term outcomes will be assessed annually for 5 years and reported separately. Ethics and dissemination National Research Ethics Committee approved this study on 16 February 2016 16/WM/0006. The National Institute for Health Research Health Technology Assessment monograph and a manuscript to a peer-reviewed journal will be submitted on completion of this trial. The results of this trial will inform clinical practice on the clinical and cost-effectiveness of the treatment of this injury

    Early access schemes for innovative health technologies: the views of international stakeholders

    Get PDF
    This is the final version. Available on open access from Cambridge University Press via the DOI in this recordOBJECTIVES: Early access schemes (EASs) are approaches used by payers to balance and facilitate earlier patient access to innovative health technologies while evidence generation is ongoing. Schemes require investment from payers and are associated with significant risk since not all technologies will be routinely reimbursed. The purpose of this study was to gain the perspectives of policy experts about the key challenges for EASs and potential solutions for their optimal design and implementation. METHODS: Two virtual workshops were convened including (i) UK-based policy experts (England, Wales, and Scotland) and (ii) representatives from multiple healthcare systems (England, France, Sweden, Canada, Poland, and Norway). Participants were encouraged to share their experiences with EASs in their healthcare system and highlight key challenges for policy makers. Discussions were transcribed and analyzed using framework analysis. RESULTS: Participants agreed that EASs have value when targeted toward innovative technologies with the potential for significant clinical benefit in an area of high unmet need. Participants discussed potential solutions to the challenges faced by payers implementing EASs, including defining eligibility criteria, supporting evidence generation, and approaches to reimbursement. CONCLUSIONS: Participants agreed that EASs are one possible solution for their healthcare systems and have the potential to deliver significant clinical value to patients. However, widespread adoption of EASs is limited due to concerns about the risks for patients and healthcare budgets, further solutions are needed to deliver EASs for targeted therapies.NHS Englan

    An evaluation of managed access agreements in England based on stakeholder experience

    Get PDF
    This is the final version. Available on open access from Cambridge University Press via the DOI in this recordOBJECTIVES: The objective of this research was to evaluate managed access policy in England, drawing upon the expertise of a range of stakeholders involved in its implementation. METHODS: Seven focus groups were conducted with payer and health technology assessment representatives, clinicians, and representatives from industry and patient/carer organizations within England. Transcripts were analyzed using framework analysis to identify stakeholders' views on the successes and challenges of managed access policy. RESULTS: Stakeholders discussed the many aims of managed access within the National Health Service in England, and how competing aims had affected decision making. While stakeholders highlighted a number of priorities within eligibility criteria for managed access agreements (MAAs), stakeholders agreed that strict eligibility criteria would be challenging to implement due to the highly variable nature of innovative technologies and their indications. Participants highlighted challenges faced with implementing MAAs, including evidence generation, supporting patients during and after the end of MAAs, and agreeing and reinforcing contractual agreements with industry. CONCLUSIONS: Managed access is one strategy that can be used by payers to resolve uncertainty for innovative technologies that present challenges for reimbursement and can also deliver earlier access to promising technologies for patients. However, participants cautioned that managed access is not a "silver bullet," and there is a need for greater clarity about the aims of managed access and how these should be prioritized in decision making. Discussions between key stakeholders involved in managed access identified challenges with implementing MAAs and these experiences should be used to inform future managed access policy.NHS Englan

    Negative-pressure wound therapy compared with standard dressings following surgical treatment of major trauma to the lower limb: the WHiST RCT.

    Get PDF
    BACKGROUND: Major trauma is the leading cause of death in people aged  72 hours after injury and inability to complete questionnaires. INTERVENTIONS: Incisional negative-pressure wound therapy (n = 785), in which a non-adherent absorbent dressing covered with a semipermeable membrane is connected to a pump to create a partial vacuum over the wound, versus standard dressings not involving negative pressure (n = 763). Trial participants and the treating surgeon could not be blinded to treatment allocation. MAIN OUTCOME MEASURES: Deep surgical site infection at 30 days was the primary outcome measure. Secondary outcomes were deep infection at 90 days, the results of the Disability Rating Index, health-related quality of life, the results of the Patient and Observer Scar Assessment Scale and resource use collected at 3 and 6 months post surgery. RESULTS: A total of 98% of participants provided primary outcome data. There was no evidence of a difference in the rate of deep surgical site infection at 30 days. The infection rate was 6.7% (50/749) in the standard dressing group and 5.8% (45/770) in the incisional negative-pressure wound therapy group (intention-to-treat odds ratio 0.87; 95% confidence interval 0.57 to 1.33; p = 0.52). There was no difference in the deep surgical site infection rate at 90 days: 13.2% in the standard dressing group and 11.4% in the incisional negative-pressure wound therapy group (odds ratio 0.84, 95% confidence interval 0.59 to 1.19; p = 0.32). There was no difference between the two groups in disability, quality of life or scar appearance at 3 or 6 months. Incisional negative-pressure wound therapy did not reduce the cost of treatment and was associated with a low probability of cost-effectiveness. LIMITATIONS: Owing to the emergency nature of the surgery, we anticipated that some patients who were randomised would subsequently be unable or unwilling to participate. However, the majority of the patients (85%) agreed to participate. Therefore, participants were representative of the population with lower-limb fractures associated with major trauma. CONCLUSIONS: The findings of this study do not support the use of negative-pressure wound therapy in patients having surgery for major trauma to the lower limbs. FUTURE WORK: Our work suggests that the use of incisional negative-pressure wound therapy dressings in other at-risk surgical wounds requires further investigation. Future research may also investigate different approaches to reduce postoperative infections, for example the use of topical antibiotic preparations in surgical wounds and the role of orthopaedic implants with antimicrobial coatings when fixing the associated fracture. TRIAL REGISTRATION: Current Controlled Trials ISRCTN12702354 and UK Clinical Research Network Portfolio ID20416. FUNDING: This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 38. See the NIHR Journals Library for further project information

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. Funding: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Wound Healing In Surgery for Trauma (WHIST): statistical analysis plan for a randomised controlled trial comparing standard wound management with negative pressure wound therapy

    No full text
    Abstract Background In the context of major trauma, the rate of wound infection in surgical incisions created during fracture fixation amongst patients with closed high-energy injuries is high. One of the factors which may reduce the risk of surgical site infection is the type of dressing applied over the closed incision. The WHIST trial evaluates the effects of negative-pressure wound therapy (NPWT) compared with standard dressings. Methods/design The WHIST trial is a multicentre, parallel group, randomised controlled trial. The primary outcome is the rate of deep surgical site infection at 30 days after major trauma. Secondary outcomes are measured at 3 and 6 months post-randomisation and include the Disability Rating Index, the EuroQoL EQ-5D-5 L, the Doleur Neuropathique Questionnaire, a patient-reported scar assessment, and record of complications. The analysis approaches for the primary and secondary outcomes are described here, as are the descriptive statistics which will be reported. The full WHIST protocol has already been published. Discussion This paper provides details of the planned statistical analyses for this trial and will reduce the risks of outcome reporting bias and data driven results. Trial registration International Standard Randomised Controlled Trials database, ISRCTN12702354. Registered on 9 December 2015
    corecore