135 research outputs found

    The emerging role of drought as a regulator of dissolved organic carbon in boreal landscapes

    Get PDF
    One likely consequence of global climate change is an increased frequency and intensity of droughts at high latitudes. Here we use a 17-year record from 13 nested boreal streams to examine direct and lagged effects of summer drought on the quantity and quality of dissolved organic carbon (DOC) inputs from catchment soils. Protracted periods of drought reduced DOC concentrations in all catchments but also led to large stream DOC pulses upon rewetting. Concurrent changes in DOC optical properties and chemical character suggest that seasonal drying and rewetting trigger soil processes that alter the forms of carbon supplied to streams. Contrary to expectations, clearest drought effects were observed in larger watersheds, whereas responses were most muted in smaller, peatland-dominated catchments. Collectively, our results indicate that summer drought causes a fundamental shift in the seasonal distribution of DOC concentrations and character, which together operate as primary controls over the ecological and biogeochemical functioning of northern aquatic ecosystems.Long-term records from boreal streams indicate strong seasonal redistributions of dissolved organic carbon concentrations and quality linked to the severity of summer drought condition

    From legacy effects of acid deposition in boreal streams to future environmental threats

    Get PDF
    Few environmental issues have resulted in such a heated policy-science controversy in Sweden as the 1990s acidification debate in the north of the country. The belief that exceptionally high stream acidity levels during hydrological events was caused by anthropogenic deposition resulted in a governmentally funded, multi-million dollar surface-water liming program. This program was heavily criticized by a large part of the scientific community arguing that the acidity of northern streams was primarily caused by naturally occurring organic acids. Here, we revisit the acid deposition legacy in northern Sweden two decades after the culmination of the controversy by examining the long-term water chemistry trends in the Svartberget/Krycklan research catchment that became a nexus for the Swedish debate. In this reference stream, trends in acidic episodes do show a modest recovery that matches declines in acid deposition to pre-industrial levels, although stream acidity continues to be overwhelmingly driven by organic acidity. Yet there are legacies of acid deposition related to calcium losses from soils, which are more pronounced than anticipated. Finally, assessment of these trends are becoming increasingly complicated by new changes and threats to water resources that must be recognized to avoid unnecessary, expensive, and potentially counterproductive measures to adapt and mitigate human influences. Here we make the argument that while the acidification era is ending, climate change, land-use transitions, and long-range transport of other contaminants warrant close monitoring in the decades to come

    Seasonal variation in the coupling of microbial activity and leaf litter decomposition in a boreal stream network

    Get PDF
    Most stream networks are characterised by spatial and temporal variability in the physico-chemical conditions that regulate microbial processing of particulate organic matter. How these patterns control the turnover of particulate organic matter via altered activity of leaf-associated microbes has rarely been studied in high-latitude landscapes, particularly throughout long (i.e., up to 6 months) ice- and snow-covered periods. We investigated development of fungal biomass, enzyme activity, microbial respiration, and birch leaf litter decomposition from autumn to early summer in 11 nested streams in a boreal catchment that encompass a gradient in wetland (mire) cover. We observed relatively low variability in decomposition rates across the network, despite differences in key physical and chemical variables (e.g. temperature, pH, and dissolved organic carbon [DOC] concentrations) over time and space. Microbial enzymatic activity and respiration were positively related to leaf litter decomposition rates during early stages of decomposition (i.e., up to c. 30% loss of initial ash-free dry mass). Thereafter, variation in microbial activity and respiration was decoupled from leaf litter mass loss, as enzymatic activity and respiration instead became positively related to DOC concentrations and upstream mire (wetland) cover among streams. Our results suggest that leaf-associated microbes increase their reliance on external sources of energy over time. This switch in resource use was more evident in streams with higher DOC concentration, which in boreal landscapes is largely determined by mire cover. Hence, variation in DOC concentration, linked to landscape configuration, or from intensified land use and climate change, could affect how different carbon sources are used by stream microbial communities, with consequences for overall carbon cycling in boreal headwaters

    Co-occurrence of browning and oligotrophication in a boreal stream network

    Get PDF
    The relative supply of carbon (C), nitrogen (N), and phosphorus (P) to freshwater ecosystems is of fundamental importance to aquatic productivity, nutrient cycling, and food web dynamics. In northern landscapes, ongoing climate change, as well as legacies from atmospheric deposition, have the potential to drive changes in how these elements are recycled on land and exported to streams. While it is well established that dissolved organic carbon (DOC) concentrations have increased in many high latitude streams, the simultaneous trends for N and P and the ratios among these resources, are not well documented. We used data from 13 sites in a boreal stream network to analyze decadal-scale changes in dissolved inorganic N (DIN), dissolved organic N (DON), and dissolved inorganic P (DIP) concentrations and partition these trends seasonally. We observed widespread declines for DIP and DIN in streams, regardless of catchment characteristics. DIN decline was strongest during the growing season, and together with increases in DOC/DON at several sites, suggests increasing N retention by plants and soil microbes across this landscape. By contrast, declines for DIP occurred primarily during late autumn and winter, indicating that key biogeochemical changes are also occurring during non-growing season. Linking these trends to increases in DOC concentration in streams revealed changes in the ratio of energy to nutrient supply for the majority of sites, becoming richer in carbon and poorer in limiting nutrients over time. Overall, our observations from this stream network point to ongoing oligotrophication, with possible consequences for aquatic ecosystems in boreal landscapes

    Integrating Discharge-Concentration Dynamics Across Carbon Forms in a Boreal Landscape

    Get PDF
    The flux of terrestrial carbon across land-water boundaries influences the overall carbon balance of landscapes and the ecology and biogeochemistry of aquatic ecosystems. The local consequences and broader fate of carbon delivered to streams is determined by the overall composition of carbon inputs, including the balance of organic and inorganic forms. Yet, our understanding of how hydrologic fluxes across different land-water interfaces regulate carbon supply remains poor. We used 7 years of data from three boreal catchments to test how different land-water interfaces (i.e., forest, wetland, and lake) modulate concentration-discharge (C-Q) relationships for dissolved organic carbon (DOC), carbon dioxide (CO2), and methane, as well as the balance among forms (e.g., DOC:CO2). Seasonal patterns in concentrations and C-Q relationships for individual carbon forms differed across catchments. DOC varied between chemostasis and transport limitation in the forest catchment, between supply limitation and chemostasis in the wetland catchment, and was persistently chemostatic in the lake outlet stream. Carbon gases were supply limited overall, but exhibited chemostasis or transport limitation in the forest and wetland catchments linked to elevated flow in summer and autumn. Unique C-Q relationships for individual forms reflected the properties of different interfaces and underpinned changes in the composition of lateral carbon supply. Accordingly, DOC dominated the carbon flux during snowmelt, whereas gas evasion increased in relative importance during other times of the year. Integrating the C-Q dynamics of individual carbon forms provides insight into the shifting composition of lateral export, and thus helps to predict how hydrologic changes may alter the fate of carbon supplied to streams

    A long-established invasive species alters the functioning of benthic biofilms in lakes

    Get PDF
    Invasive species often transform environmental conditions, exclude native species and alter ecosystem functioning, including key ecosystem processes underpinning nutrient and energy cycles. However, such impacts have been most documented during periods of invasive species dominance; their influences on functioning at lower relative abundances and after long-term establishment are less well-known.We investigated the effects of Elodea canadensis, a macrophyte native to North America with a long invasion history in many regions of the world, on the biomass accrual and metabolism of littoral zone biofilms growing on organic and inorganic substrates.We deployed nutrient diffusing substrates (NDS) in 18 replicate transects distributed across six lakes, comprising three invaded by E. canadensis and three uninvaded reference lakes. NDS were amended with nitrogen (N), phosphorus (P) or N + P together, or were deployed as unamended controls. E. canadensis relative abundance varied widely in the invaded transects, ranging from 13% to 93% of all macrophyte cover.On control substrates, algal biomass, quantified as Chlorophyll-a, and gross primary production (GPP) were 42% and 78% greater in the invaded compared to uninvaded lakes, respectively. Respiration rates, attributable to responses of both autotrophs and heterotrophs, were 45% greater on control substrates in invaded lakes. By contrast, N-limitation of both biofilm GPP and respiration was 25% and 35% greater in uninvaded compared with invaded lakes.There was no evidence for differences in nutrients, light availability or grazing pressure between invaded and uninvaded transects. Rather, the observed differences in metabolism suggest that the presence of E. canadensis increases availability of N at local scales, reducing N-limitation of biofilms and resulting in elevated rates of biofilm productivity.Our results demonstrate that invasive elodeids might have significant impacts on biofilms and processes associated with the cycling of nutrients, even when long-established and present at lower relative abundances

    Scale-dependent groundwater contributions influence patterns of winter baseflow stream chemistry in boreal catchments

    Get PDF
    Funded by •KCS •Swedish Science Foundation (VR) SITES •European Research Council. Grant Number: GA 335910 VEWAPeer reviewedPublisher PD

    Resolving the Drivers of Algal Nutrient Limitation from Boreal to Arctic Lakes and Streams

    Get PDF
    Nutrient inputs to northern freshwaters are changing, potentially altering aquatic ecosystem functioning through effects on primary producers. Yet, while primary producer growth is sensitive to nutrient supply, it is also constrained by a suite of other factors, including light and temperature, which may play varying roles across stream and lake habitats. Here, we use bioassay results from 89 lakes and streams spanning northern boreal to Arctic Sweden to test for differences in nutrient limitation status of algal biomass along gradients in colored dissolved organic carbon (DOC), water temperature, and nutrient concentrations, and to ask whether there are distinct patterns and drivers between habitats. Single nitrogen (N) limitation or primary N-limitation with secondary phosphorus (P) limitation of algal biomass was the most common condition for streams and lakes. Average response to N-addition was a doubling in biomass; however, the degree of limitation was modulated by the distinct physical and chemical conditions in lakes versus streams and across boreal to Arctic regions. Overall, algal responses to N-addition were strongest at sites with low background concentrations of dissolved inorganic N. Low temperatures constrained biomass responses to added nutrients in lakes but had weaker effects on responses in streams. Further, DOC mediated the response of algal biomass to nutrient addition differently among lakes and streams. Stream responses were dampened at higher DOC, whereas lake responses to nutrient addition increased from low to moderate DOC but were depressed at high DOC. Our results suggest that future changes in nutrient availability, particularly N, will exert strong effects on the trophic state of northern freshwaters. However, we highlight important differences in the physical and chemical factors that shape algal responses to nutrient availability in different parts of aquatic networks, which will ultimately affect the integrated response of northern aquatic systems to ongoing environmental changes

    Landscape constraints on mire lateral expansion

    Get PDF
    Little is known about the long-term expansion of mire ecosystems, despite their importance in the globalcarbon and hydrogeochemical cycles. It has been firmly established that mires do not expand linearlyover time. Despite this, mires are often assumed to have expanded at a constant rate after initiationsimply for lack of a better understanding. There has not yet been a serious attempt to determine the rateand drivers of mire expansion at the regional, or larger spatial scales. Here we make use of a naturalchronosequence, spanning the Holocene, which is provided by the retreating coastline of NorthernSweden. By studying an isostatic rebound area we can infer mire expansion dynamics by looking at theportion of the landscape where mires become progressively scarce as the land becomes younger. Ourresults confirms that mires expanded non-linearly across the landscape and that their expansion isrelated to the availability of suitably wet areas, which, in our case, depends primarily on the hydro-edaphic properties of the landscape. Importantly, we found that mires occupied the wettest locationsin the landscape within only one to two thousand years, while it took mires three to four thousand yearsto expand into slightly drier areas. Our results imply that the lateral expansion of mires, and thus peataccumulation is a non-linear process, occurring at different rates depending, above all else, on thewetness of the landscape

    Topography and Time Shape Mire Morphometry and Large-Scale Mire Distribution Patterns in the Northern Boreal Landscape

    Get PDF
    Peatlands are major terrestrial soil carbon stores, and open mires in boreal landscapes hold a considerable fraction of the global peat carbon. Despite decades of study, large-scale spatiotemporal analyses of mire arrangement have been scarce, which has limited our ability to scale-up mire properties, such as carbon accumulation to the landscape level. Here, we use a land-uplift mire chronosequence in northern Sweden spanning 9,000 years to quantify controls on mire distribution patterns. Our objectives include assessing changes in the spatial arrangement of mires with land surface age, and understanding modifications by upland hydrotopography. Characterizing over 3,000 mires along a 30 km transect, we found that the time since land emergence from the sea was the dominant control over mire coverage, especially for the establishment of large mire complexes. Mires at the youngest end of the chronosequence were small with heterogenous morphometry (shape, slope, and catchment-to-mire areal ratios), while mires on the oldest surfaces were variable in size, but included larger mires with more complex shapes and smaller catchment-to-mire ratios. In general, complex topography fragmented mires by constraining the lateral expansion, resulting in a greater number of mires, but reduced total mire area regardless of landscape age. Mires in this study area occurred on slopes up to 4%, indicating a hydrological boundary to peatland expansion under local climatic conditions. The consistency in mire responses to spatiotemporal controls illustrates how temporal limitation in peat initiation and accumulation, and topographic constraints to mire expansion together have shaped present day mire distribution patterns
    corecore