306 research outputs found

    Differential Trends in Iron Concentrations of Boreal Streams Linked to Catchment Characteristics

    Get PDF
    Increasing iron (Fe) concentrations have been reported for freshwaters across northern Europe over the last decades. This increase, together with elevated concentrations of dissolved organic carbon (DOC), leads to browning of freshwaters, which affects aquatic organisms, ecosystem functioning, biogeochemical cycles, and brings challenges to drinking water production. However, how such increasing trends in stream Fe concentrations reflect the contribution of different catchment sources remains poorly resolved. Here, we explored how catchment characteristics, that is, mires and coniferous soils, regulate spatial and temporal patterns of Fe in a boreal stream network. For this, we determined Fe speciation in riparian and mire soils, and studied temporal Fe dynamics in soil-water and stream-water over a span of 18 years. Positive Fe trends were found in the solution of the riparian soil, while no long-term trend was observed in the mire. These differences were reflected in stream-water, where three headwater streams dominated by coniferous cover also displayed positive Fe trends, whereas the mire dominated stream showed no trend. Surprisingly, the majority of higher order streams showed declining Fe trends, despite long-term increases in DOC. In addition, we found that an extreme drought event led to a prolonged release of Fe and DOC from the riparian soils, that could have long-term effects on stream Fe concentrations. Our results show that riparian forest soils can be major contributors to ongoing increases in freshwater Fe concentrations and that drought can further promote the release of Fe from organic soils

    Clinical and Immunomodulating Effects of Ketamine in Horses with Experimental Endotoxemia

    Get PDF
    Background:  Ketamine has immunomodulating effects both in vitro and in vivo during experimental endotoxemia in humans, rodents, and dogs. Hypothesis:  Subanesthetic doses of ketamine will attenuate the clinical and immunologic responses to experimental endotoxemia in horses. Animals:  Nineteen healthy mares of various breeds. Methods:  Experimental study. Horses were randomized into 2 groups: ketamine-treated horses (KET; n = 9) and saline-treated horses (SAL; n = 10). Both groups received 30 ng/kg of lipopolysaccharide (LPS, Escherichia coli, O55:B5) 1 hour after the start of a continuous rate infusion (CRI) of racemic ketamine (KET) or physiologic saline (SAL). Clinical and hematological responses were documented and plasma concentrations of tumor necrosis factor-α (TNF-α) and thromboxane B2 (TXB2) were quantified. Results:  All horses safely completed the study. The KET group exhibited transient excitation during the ketamine loading infusion (P \u3c .05) and 1 hour after discontinuation of administration (P \u3c .05). Neutrophilic leukocytosis was greater in the KET group 8 and 24 hours after administration of LPS (P \u3c .05). Minor perturbations of plasma biochemistry results were considered clinically insignificant. Plasma TNF-α and TXB2 production peaked 1.5 and 1 hours, respectively, after administration of LPS in both groups, but a significant difference between treatment groups was not demonstrated. Conclusions and Clinical Importance:  A subanesthetic ketamine CRI is well tolerated by horses. A significant effect on the clinical or immunologic response to LPS administration, as assessed by clinical observation, hematological parameters, and TNF-α and TXB2production, was not identified in healthy horses with the subanesthetic dose of racemic ketamine utilized in this study

    Resolving the Drivers of Algal Nutrient Limitation from Boreal to Arctic Lakes and Streams

    Get PDF
    Nutrient inputs to northern freshwaters are changing, potentially altering aquatic ecosystem functioning through effects on primary producers. Yet, while primary producer growth is sensitive to nutrient supply, it is also constrained by a suite of other factors, including light and temperature, which may play varying roles across stream and lake habitats. Here, we use bioassay results from 89 lakes and streams spanning northern boreal to Arctic Sweden to test for differences in nutrient limitation status of algal biomass along gradients in colored dissolved organic carbon (DOC), water temperature, and nutrient concentrations, and to ask whether there are distinct patterns and drivers between habitats. Single nitrogen (N) limitation or primary N-limitation with secondary phosphorus (P) limitation of algal biomass was the most common condition for streams and lakes. Average response to N-addition was a doubling in biomass; however, the degree of limitation was modulated by the distinct physical and chemical conditions in lakes versus streams and across boreal to Arctic regions. Overall, algal responses to N-addition were strongest at sites with low background concentrations of dissolved inorganic N. Low temperatures constrained biomass responses to added nutrients in lakes but had weaker effects on responses in streams. Further, DOC mediated the response of algal biomass to nutrient addition differently among lakes and streams. Stream responses were dampened at higher DOC, whereas lake responses to nutrient addition increased from low to moderate DOC but were depressed at high DOC. Our results suggest that future changes in nutrient availability, particularly N, will exert strong effects on the trophic state of northern freshwaters. However, we highlight important differences in the physical and chemical factors that shape algal responses to nutrient availability in different parts of aquatic networks, which will ultimately affect the integrated response of northern aquatic systems to ongoing environmental changes

    Riparian zones increase regional species richness by harboring different, not more, species

    Get PDF
    Riparian zones are habitats of critical conservation concern worldwide, as they are known to filter agricultural contaminants, buffer landscapes against erosion, and provide habitat for high numbers of species. Here we test the generality of the notion that riparian habitats harbor more species than adjacent upland habitats. Using previously published data collected from seven continents and including taxa ranging from Antarctic soil invertebrates to tropical rain forest lianas and primates, we show that riparian habitats do not harbor higher numbers of species, but rather support significantly different species pools altogether. In this way, riparian habitats increase regional (γ-) richness across the globe by >50%, on average. Thus conservation planners can easily increase the number of species protected in a regional portfolio by simply including a river within terrestrial biodiversity reserves. Our analysis also suggests numerous possible improvements for future studies of species richness gradients across riparian and upland habitats. First, <15% of the studies in our analysis included estimates of more than one taxonomic group of interest. Second, within a given taxonomic group, studies employed variable methodologies and sampling areas in pursuit of richness and turnover estimates. Future analyses of species richness patterns in watersheds should aim to include a more comprehensive suite of taxonomic groups and should measure richness at multiple spatial scales

    Rare causes of scoliosis and spine deformity: experience and particular features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spine deformity can be idiopathic (more than 80% of cases), neuromuscular, congenital or neurofibromatosis-related. However, there are many disorders that may also be involved. We present our experience treating patients with scoliosis or other spine deformities related to rare clinical entities.</p> <p>Methods</p> <p>A retrospective study of the records of a school-screening study in North-West Greece was performed, covering a 10-year period (1992–2002). The records were searched for patients with deformities related to rare disorders. These patients were reviewed as regards to characteristics of underlying disorder and spine deformity, treatment and results, complications, intraoperative and anaesthesiologic difficulties particular to each case.</p> <p>Results</p> <p>In 13 cases, the spine deformity presented in relation to rare disorders. The underlying disorder was rare neurological disease in 2 cases (Rett syndrome, progressive hemidystonia), muscular disorders (facioscapulohumeral muscular dystrophy, arthrogryposis) in 2 patients, osteogenesis imperfecta in 2 cases, Marfan syndrome, osteopetrosis tarda, spondyloepiphyseal dysplasia congenita, cleidocranial dysplasia and Noonan syndrome in 1 case each. In 2 cases scoliosis was related to other congenital anomalies (phocomelia, blindness). Nine of these patients were surgically treated. Surgery was avoided in 3 patients.</p> <p>Conclusion</p> <p>This study illustrates the fact that different disorders are related with curves with different characteristics, different accompanying problems and possible complications. Investigation and understanding of the underlying pathology is an essential part of the clinical evaluation and preoperative work-up, as clinical experience at any specific center is limited.</p

    Local Strain Heterogeneity Influences the Optoelectronic Properties of Halide Perovskites

    Get PDF
    Halide perovskites are promising semiconductors for optoelectronics, yet thin films show substantial microscale heterogeneity. Understanding the origins of these variations is essential for mitigating parasitic losses such as non-radiative decay. Here, we probe the structural and chemical origins of the heterogeneity by utilizing scanning X-ray diffraction beamlines at two different synchrotrons combined with high-resolution transmission electron microscopy to spatially characterize the crystallographic properties of individual micrometer-sized perovskite grains in high-quality films. We reveal new levels of heterogeneity on the ten-micrometer scale (super-grains) and even ten-nanometer scale (sub-grain domains). By directly correlating these properties with their corresponding local time-resolved photoluminescence properties, we find that regions showing the greatest luminescence losses correspond to strained regions, which arise from enhanced defect concentrations. Our work reveals remarkably complex heterogeneity across multiple length scales, shedding new light on the defect tolerance of perovskites

    The long-term fate of the hip arthrodesis: does it remain a valid procedure for selected cases in the 21st century?

    Get PDF
    Even in current orthopaedic practice, some cases are still not suitable candidates for hip replacement and hip fusion remains the only option in these highly selected patients. In this retrospective study we describe the long-term clinical outcome, quality of life and radiological evaluation of all adjacent joints in a cohort of 47 hip fusions. The main objective of our study was to show the long-term effects of a fusion. Thirty patients were analysed after an average of 18.2 years (range 6.2–30.5 years) with a mean SMFA of 31.2 (range 9–70). The VAS for pain for the fused hip was an average 1.9 (range 0–8), for the contralateral hip 2.0 (0–8), for the ipsilateral knee 2.0 (0–8), for the contralateral knee 1.8 (0–8) and for the lower back 3.6 (0–8). Average walking distance was 115 minutes (range 10–unlimited). Although the hip arthrodesis has lost popularity, it still is an option for the young patient with severe hip disorders, while leaving the possibility to perform a THA at a later stage. If the arthrodesis is performed with an optimal alignment of the leg, complaints from the adjacent joints are minimal, even in the long-term, and an acceptable quality of life can be obtained. We believe that in highly selected cases a hip fusion, even in current practice, is still a valid option

    Envelope Determinants of Equine Lentiviral Vaccine Protection

    Get PDF
    Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection. © 2013 Craigo et al
    • …
    corecore