1,842 research outputs found
Collisional invariants for the phonon Boltzmann equation
For the phonon Boltzmann equation with only pair collisions we characterize
the set of all collisional invariants under some mild conditions on the
dispersion relation
Approach to equilibrium for the phonon Boltzmann equation
We study the asymptotics of solutions of the Boltzmann equation describing
the kinetic limit of a lattice of classical interacting anharmonic oscillators.
We prove that, if the initial condition is a small perturbation of an
equilibrium state, and vanishes at infinity, the dynamics tends diffusively to
equilibrium. The solution is the sum of a local equilibrium state, associated
to conserved quantities that diffuse to zero, and fast variables that are
slaved to the slow ones. This slaving implies the Fourier law, which relates
the induced currents to the gradients of the conserved quantities.Comment: 23 page
Complementarity relation for irreversible process derived from stochastic energetics
When the process of a system in contact with a heat bath is described by
classical Langevin equation, the method of stochastic energetics [K. Sekimoto,
J. Phys. Soc. Jpn. vol. 66 (1997) p.1234] enables to derive the form of
Helmholtz free energy and the dissipation function of the system. We prove that
the irreversible heat Q_irr and the time lapse $Delta t} of an isothermal
process obey the complementarity relation, Q_irr {Delta t} >= k_B T S_min,
where S_min depends on the initial and the final values of the control
parameters, but it does not depend on the pathway between these values.Comment: 3 pages. LaTeX with 6 style macro
Ground States in the Spin Boson Model
We prove that the Hamiltonian of the model describing a spin which is
linearly coupled to a field of relativistic and massless bosons, also known as
the spin-boson model, admits a ground state for small values of the coupling
constant lambda. We show that the ground state energy is an analytic function
of lambda and that the corresponding ground state can also be chosen to be an
analytic function of lambda. No infrared regularization is imposed. Our proof
is based on a modified version of the BFS operator theoretic renormalization
analysis. Moreover, using a positivity argument we prove that the ground state
of the spin-boson model is unique. We show that the expansion coefficients of
the ground state and the ground state energy can be calculated using regular
analytic perturbation theory
Time Evolution of Spin Waves
A rigorous derivation of macroscopic spin-wave equations is demonstrated. We
introduce a macroscopic mean-field limit and derive the so-called
Landau-Lifshitz equations for spin waves. We first discuss the ferromagnetic
Heisenberg model at T=0 and finally extend our analysis to general spin
hamiltonians for the same class of ferromagnetic ground states.Comment: 4 pages, to appear in PR
Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers
The distribution function of the free energy fluctuations in one-dimensional
directed polymers with -correlated random potential is studied by
mapping the replicated problem to the -particle quantum boson system with
attractive interactions. We find the full set of eigenfunctions and eigenvalues
of this many-body system and perform the summation over the entire spectrum of
excited states. It is shown that in the thermodynamic limit the problem is
reduced to the Fredholm determinant with the Airy kernel yielding the universal
Tracy-Widom distribution, which is known to describe the statistical properties
of the Gaussian unitary ensemble as well as many other statistical systems.Comment: 23 page
Hard rod gas with long-range interactions: Exact predictions for hydrodynamic properties of continuum systems from discrete models
One-dimensional hard rod gases are explicitly constructed as the limits of
discrete systems: exclusion processes involving particles of arbitrary length.
Those continuum many-body systems in general do not exhibit the same
hydrodynamic properties as the underlying discrete models. Considering as
examples a hard rod gas with additional long-range interaction and the
generalized asymmetric exclusion process for extended particles (-ASEP),
it is shown how a correspondence between continuous and discrete systems must
be established instead. This opens up a new possibility to exactly predict the
hydrodynamic behaviour of this continuum system under Eulerian scaling by
solving its discrete counterpart with analytical or numerical tools. As an
illustration, simulations of the totally asymmetric exclusion process
(-TASEP) are compared to analytical solutions of the model and applied to
the corresponding hard rod gas. The case of short-range interaction is treated
separately.Comment: 19 pages, 8 figure
Fluctuation theorem for counting-statistics in electron transport through quantum junctions
We demonstrate that the probability distribution of the net number of
electrons passing through a quantum system in a junction obeys a steady-state
fluctuation theorem (FT) which can be tested experimentally by the full
counting statistics (FCS) of electrons crossing the lead-system interface. The
FCS is calculated using a many-body quantum master equation (QME) combined with
a Liouville space generating function (GF) formalism. For a model of two
coupled quantum dots, we show that the FT becomes valid for long binning times
and provide an estimate for the finite-time deviations. We also demonstrate
that the Mandel (or Fano) parameter associated with the incoming or outgoing
electron transfers show subpoissonian (antibunching) statistics.Comment: 20 pages, 12 figures, accepted in Phy.Rev.
Thermal conductivity in harmonic lattices with random collisions
We review recent rigorous mathematical results about the macroscopic
behaviour of harmonic chains with the dynamics perturbed by a random exchange
of velocities between nearest neighbor particles. The random exchange models
the effects of nonlinearities of anharmonic chains and the resulting dynamics
have similar macroscopic behaviour. In particular there is a superdiffusion of
energy for unpinned acoustic chains. The corresponding evolution of the
temperature profile is governed by a fractional heat equation. In non-acoustic
chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics
volume "Thermal transport in low dimensions: from statistical physics to
nanoscale heat transfer" (S. Lepri ed.
A numerical approach to large deviations in continuous-time
We present an algorithm to evaluate the large deviation functions associated
to history-dependent observables. Instead of relying on a time discretisation
procedure to approximate the dynamics, we provide a direct continuous-time
algorithm, valuable for systems with multiple time scales, thus extending the
work of Giardin\`a, Kurchan and Peliti (PRL 96, 120603 (2006)).
The procedure is supplemented with a thermodynamic-integration scheme, which
improves its efficiency. We also show how the method can be used to probe large
deviation functions in systems with a dynamical phase transition -- revealed in
our context through the appearance of a non-analyticity in the large deviation
functions.Comment: Submitted to J. Stat. Mec
- …
