500 research outputs found

    Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory

    Full text link
    Through a Euclidean path integral we establish that the density fluctuations of a Fermi fluid in one dimension are related to vicinal surfaces and to the stochastic dynamics of particles interacting through long range forces with inverse distance decay. In the surface picture one easily obtains the Haldane relation and identifies the scaling exponents governing the low energy, Luttinger liquid behavior. For the stochastic particle model we develop a hydrodynamic fluctuation theory, through which in some cases the large distance Gaussian fluctuations are proved nonperturbatively

    Transfer matrices for the totally asymmetric exclusion process

    Full text link
    We consider the totally asymmetric simple exclusion process (TASEP) on a finite lattice with open boundaries. We show, using the recursive structure of the Markov matrix that encodes the dynamics, that there exist two transfer matrices TL1,LT_{L-1,L} and T~L1,L\tilde{T}_{L-1,L} that intertwine the Markov matrices of consecutive system sizes: T~L1,LML1=MLTL1,L\tilde{T}_{L-1,L}M_{L-1}=M_{L}T_{L-1,L}. This semi-conjugation property of the dynamics provides an algebraic counterpart for the matrix-product representation of the steady state of the process.Comment: 7 page

    Kinetics of A+B--->0 with Driven Diffusive Motion

    Full text link
    We study the kinetics of two-species annihilation, A+B--->0, when all particles undergo strictly biased motion in the same direction and with an excluded volume repulsion between same species particles. It was recently shown that the density in this system decays as t^{-1/3}, compared to t^{-1/4} density decay in A+B--->0 with isotropic diffusion and either with or without the hard-core repulsion. We suggest a relatively simple explanation for this t^{-1/3} decay based on the Burgers equation. Related properties associated with the asymptotic distribution of reactants can also be accounted for within this Burgers equation description.Comment: 11 pages, plain Tex, 8 figures. Hardcopy of figures available on request from S

    Some Exact Results for the Exclusion Process

    Full text link
    The asymmetric simple exclusion process (ASEP) is a paradigm for non-equilibrium physics that appears as a building block to model various low-dimensional transport phenomena, ranging from intracellular traffic to quantum dots. We review some recent results obtained for the system on a periodic ring by using the Bethe Ansatz. We show that this method allows to derive analytically many properties of the dynamics of the model such as the spectral gap and the generating function of the current. We also discuss the solution of a generalized exclusion process with NN-species of particles and explain how a geometric construction inspired from queuing theory sheds light on the Matrix Product Representation technique that has been very fruitful to derive exact results for the ASEP.Comment: 21 pages; Proceedings of STATPHYS24 (Cairns, Australia, July 2010

    Density Profile of the One-Dimensional Partially Asymmetric Simple Exclusion Process with Open Boundaries

    Full text link
    The one-dimensional partially asymmetric simple exclusion process with open boundaries is considered. The stationary state, which is known to be constructed in a matrix product form, is studied by applying the theory of q-orthogonal polynomials. Using a formula of the q-Hermite polynomials, the average density profile is computed in the thermodynamic limit. The phase diagram for the correlation length, which was conjectured in the previous work[J. Phys. A {\bf 32} (1999) 7109], is confirmed.Comment: 24 pages, 6 figure

    A new class of integrable diffusion-reaction processes

    Full text link
    We consider a process in which there are two types of particles, A and B, on an infinite one-dimensional lattice. The particles hop to their adjacent sites, like the totally asymmetric exclusion process (ASEP), and have also the following interactions: A+B -> B+B and B+A -> B+B, all occur with equal rate. We study this process by imposing four boundary conditions on ASEP master equation. It is shown that this model is integrable, in the sense that its N-particle S-matrix is factorized into a product of two-particle S-matrices and, more importantly, the two-particle S-matrix satisfy quantum Yang-Baxter equation. Using coordinate Bethe-ansatz, the N-particle wavefunctions and the two-particle conditional probabilities are found exactly. Further, by imposing four reasonable physical conditions on two-species diffusion-reaction processes (where the most important ones are the equality of the reaction rates and the conservation of the number of particles in each reaction), we show that among the 4096 types of the interactions which have these properties and can be modeled by a master equation and an appropriate set of boundary conditions, there are only 28 independent interactions which are integrable. We find all these interactions and also their corresponding wave functions. Some of these may be new solutions of quantum Yang-Baxter equation.Comment: LaTex,16 pages, some typos are corrected, will be appeared in Phys. Rev. E (2000

    Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition

    Full text link
    For the symmetric simple exclusion process on an infinite line, we calculate exactly the fluctuations of the integrated current QtQ_t during time tt through the origin when, in the initial condition, the sites are occupied with density ρa\rho_a on the negative axis and with density ρb\rho_b on the positive axis. All the cumulants of QtQ_t grow like t\sqrt{t}. In the range where QttQ_t \sim \sqrt{t}, the decay exp[Qt3/t]\exp [-Q_t^3/t] of the distribution of QtQ_t is non-Gaussian. Our results are obtained using the Bethe ansatz and several identities recently derived by Tracy and Widom for exclusion processes on the infinite line.Comment: 2 figure

    Hidden symmetries in the asymmetric exclusion process

    Full text link
    We present a spectral study of the evolution matrix of the totally asymmetric exclusion process on a ring at half filling. The natural symmetries (translation, charge conjugation combined with reflection) predict only two fold degeneracies. However, we have found that degeneracies of higher order also exist and, as the system size increases, higher and higher orders appear. These degeneracies become generic in the limit of very large systems. This behaviour can be explained by the Bethe Ansatz and suggests the presence of hidden symmetries in the model. Keywords: ASEP, Markov matrix, symmetries, spectral degeneracies, Bethe Ansatz.Comment: 16 page

    Exact solution of an exclusion process with three classes of particles and vacancies

    Full text link
    We present an exact solution for an asymmetric exclusion process on a ring with three classes of particles and vacancies. Using a matrix product Ansatz, we find explicit expressions for the weights of the configurations in the stationary state. The solution involves tensor products of quadratic algebras.Comment: 18 pages, no figures, LaTe

    Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems

    Full text link
    We prove Lieb-Robinson bounds for the dynamics of systems with an infinite dimensional Hilbert space and generated by unbounded Hamiltonians. In particular, we consider quantum harmonic and certain anharmonic lattice systems
    corecore