1,351 research outputs found

    Collisional invariants for the phonon Boltzmann equation

    Full text link
    For the phonon Boltzmann equation with only pair collisions we characterize the set of all collisional invariants under some mild conditions on the dispersion relation

    Approach to equilibrium for the phonon Boltzmann equation

    Full text link
    We study the asymptotics of solutions of the Boltzmann equation describing the kinetic limit of a lattice of classical interacting anharmonic oscillators. We prove that, if the initial condition is a small perturbation of an equilibrium state, and vanishes at infinity, the dynamics tends diffusively to equilibrium. The solution is the sum of a local equilibrium state, associated to conserved quantities that diffuse to zero, and fast variables that are slaved to the slow ones. This slaving implies the Fourier law, which relates the induced currents to the gradients of the conserved quantities.Comment: 23 page

    The University that Does Justice

    Get PDF

    Complementarity relation for irreversible process derived from stochastic energetics

    Full text link
    When the process of a system in contact with a heat bath is described by classical Langevin equation, the method of stochastic energetics [K. Sekimoto, J. Phys. Soc. Jpn. vol. 66 (1997) p.1234] enables to derive the form of Helmholtz free energy and the dissipation function of the system. We prove that the irreversible heat Q_irr and the time lapse $Delta t} of an isothermal process obey the complementarity relation, Q_irr {Delta t} >= k_B T S_min, where S_min depends on the initial and the final values of the control parameters, but it does not depend on the pathway between these values.Comment: 3 pages. LaTeX with 6 style macro

    Clausius inequality and optimality of quasi static transformations for nonequilibrium stationary states

    Full text link
    Nonequilibrium stationary states of thermodynamic systems dissipate a positive amount of energy per unit of time. If we consider transformations of such states that are realized by letting the driving depend on time, the amount of energy dissipated in an unbounded time window becomes then infinite. Following the general proposal by Oono and Paniconi and using results of the macroscopic fluctuation theory, we give a natural definition of a renormalized work performed along any given transformation. We then show that the renormalized work satisfies a Clausius inequality and prove that equality is achieved for very slow transformations, that is in the quasi static limit. We finally connect the renormalized work to the quasi potential of the macroscopic fluctuation theory, that gives the probability of fluctuations in the stationary nonequilibrium ensemble

    Ground States in the Spin Boson Model

    Full text link
    We prove that the Hamiltonian of the model describing a spin which is linearly coupled to a field of relativistic and massless bosons, also known as the spin-boson model, admits a ground state for small values of the coupling constant lambda. We show that the ground state energy is an analytic function of lambda and that the corresponding ground state can also be chosen to be an analytic function of lambda. No infrared regularization is imposed. Our proof is based on a modified version of the BFS operator theoretic renormalization analysis. Moreover, using a positivity argument we prove that the ground state of the spin-boson model is unique. We show that the expansion coefficients of the ground state and the ground state energy can be calculated using regular analytic perturbation theory

    Recently fixed carbon fuels microbial activity several meters below the soil surface

    Get PDF
    This data file (Scheibe_2022.xlsx) contains radiocarbon data of bulk soil carbon and CO2 respired in incubations from soil profiles in three climate zones (arid, mediterranean, and humid) of the Costal Cordillera of Chile down to a depth of six meters. Variable descriptions are provided in Template Info File. The data are part of a study, which investigates how soil microbial carbon cycling affects soil formation especially in the critical zone by understanding the carbon source of microbial activity in deep soil. The study was conducted within the framework of the Deep EarthShape priority program funded by the German Science Foundation (DFG-SPP 1803)
    • …
    corecore