112 research outputs found

    Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development

    Get PDF
    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure. Includes Supplementary Information

    Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development

    Get PDF
    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure. Includes Supplementary Information

    Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation

    Get PDF
    Neonicotinoids are highly toxic to insects and may systemically translocate to nectar and pollen of plants where foraging bees may become exposed. Exposure to neonicotinoids can induce detrimental sublethal effects on individual and colonies of bees and may have long-term impacts, such as impaired foraging, reduced longevity, and reduced brood care or production. Less well-studied are the potential effects on queen bumble bees that may become exposed while foraging in the spring during colony initiation. This study assessed queen survival and nest founding in caged bumble bees [Bombus impatiens (Cresson) (Hymenoptera: Apidae)] after chronic (18-d) dietary exposure of imidacloprid in syrup (1, 5, 10, and 25 ppb) and pollen (0.3, 1.7, 3.3, and 8.3 ppb), paired respectively. Here we show some mortality in queens exposed at all doses even as low as 1 ppb, and, compared with untreated queens, significantly reduced survival of treated queens at the two highest doses. Queens that survived initial imidacloprid exposure commenced nest initiation; however, they exhibited dose-dependent delay in egg-laying and emergence of worker brood. Furthermore, imidacloprid treatment affected other parameters such as nest and queen weight. This study is the first to show direct impacts of imidacloprid at field-relevant levels on individual B. impatiens queen survival and nest founding, indicating that bumble bee queens are particularly sensitive to neonicotinoids when directly exposed. This study also helps focus pesticide risk mitigation efforts and highlights the importance of reducing exposure rates in the early spring when bumble bee queens, and other wild bees are foraging and initiating nests

    Propolis envelope in Apis mellifera colonies supports honey bees against the pathogen, Paenibacillus larvae

    Get PDF
    Honey bees have immune defenses both as individuals and as a colony (e.g., individual and social immunity). One form of honey bee social immunity is the collection of antimicrobial plant resins and the deposition of the resins as a propolis envelope within the nest. In this study, we tested the efects of the propolis envelope as a natural defense against Paenibacillus larvae, the causative agent of American foulbrood (AFB) disease. Using colonies with and without a propolis envelope, we quantifed: 1) the antimicrobial activity of larval food fed to 1–2day old larvae; and 2) clinical signs of AFB. Our results show that the antimicrobial activity of larval food was signifcantly higher when challenged colonies had a propolis envelope compared to colonies without the envelope. In addition, colonies with a propolis envelope had signifcantly reduced levels of AFB clinical signs two months following challenge. Our results indicate that the propolis envelope serves as an antimicrobial layer around the colony that helps protect the brood from bacterial pathogen infection, resulting in a lower colony-level infection load

    Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation

    Get PDF
    Neonicotinoids are highly toxic to insects and may systemically translocate to nectar and pollen of plants where foraging bees may become exposed. Exposure to neonicotinoids can induce detrimental sublethal effects on individual and colonies of bees and may have long-term impacts, such as impaired foraging, reduced longevity, and reduced brood care or production. Less well-studied are the potential effects on queen bumble bees that may become exposed while foraging in the spring during colony initiation. This study assessed queen survival and nest founding in caged bumble bees [Bombus impatiens (Cresson) (Hymenoptera: Apidae)] after chronic (18-d) dietary exposure of imidacloprid in syrup (1, 5, 10, and 25 ppb) and pollen (0.3, 1.7, 3.3, and 8.3 ppb), paired respectively. Here we show some mortality in queens exposed at all doses even as low as 1 ppb, and, compared with untreated queens, significantly reduced survival of treated queens at the two highest doses. Queens that survived initial imidacloprid exposure commenced nest initiation; however, they exhibited dose-dependent delay in egg-laying and emergence of worker brood. Furthermore, imidacloprid treatment affected other parameters such as nest and queen weight. This study is the first to show direct impacts of imidacloprid at field-relevant levels on individual B. impatiens queen survival and nest founding, indicating that bumble bee queens are particularly sensitive to neonicotinoids when directly exposed. This study also helps focus pesticide risk mitigation efforts and highlights the importance of reducing exposure rates in the early spring when bumble bee queens, and other wild bees are foraging and initiating nests

    Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use

    Get PDF
    We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments

    Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies

    Get PDF
    The Northern Great Plains region of the US annually hosts a large portion of commercially managed U.S. honey bee colonies each summer. Changing land use patterns over the last several decades have contributed to declines in the availability of bee forage across the region, and the future sustainability of the region to support honey bee colonies is unclear. We examined the influence of varying land use on the survivorship and productivity of honey bee colonies located in six apiaries within the Northern Great Plains state of North Dakota, an area of intensive agriculture and high density of beekeeping operations. Land use surrounding the apiaries was quantified over three years, 2010–2012, and survival and productivity of honey bee colonies were determined in response to the amount of bee forage land within a 3.2-km radius of each apiary. The area of uncultivated forage land (including pasture, USDA conservation program fields, fallow land, flowering woody plants, grassland, hay land, and roadside ditches) exerted a positive impact on annual apiary survival and honey production. Taxonomic diversity of bee-collected pollen and pesticide residues contained therein varied seasonally among apiaries, but overall were not correlated to large-scale land use patterns or survival and honey production. The predominant flowering plants utilized by honey bee colonies for pollen were volunteer species present in unmanaged (for honey bees), and often ephemeral, lands; thus placing honey bee colonies in a precarious situation for acquiring forage and nutrients over the entire growing season. We discuss the implications for land management, conservation, and beekeeper site selection in the Northern Great Plains to adequately support honey bee colonies and insure long term security for pollinator-dependent crops across the entire country

    Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use

    Get PDF
    We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments

    Loci de rasgos binarios que influyen en la expresión del comportamiento higiénico de las abejas melíferas

    Get PDF
    This study was conducted to detect binary trait loci (BTLs) that influence the expression of hygienic behavior of individual honey bee workers and to locate genetic markers that are associated to these BTLs on a genetic map derived from bees that perform hygienic behavior of a backcross colony. Samples of workers that perform hygienic behavior and workers that not perform hygienic behavior that were used as controls were collected from the colony.Este estudio se realizó, para detectar loci de rasgos binarios (BTL) que influyen en la expresión del comportamiento higiénico de abejas obreras y para localizar marcadores genéticos asociados a estos BTL en un mapa de ligamiento. Se recolectaron abejas que realizaron el comportamiento higiénico y abejas que no realizaron el comportamiento higiénico de una colonia producto de una retrocruza. Se construyó, un mapa genético utilizando marcadores AFLP generados a partir del ADN de las abejas que realizaron el comportamiento higiénico
    corecore