232 research outputs found

    Retrospection

    Get PDF
    When we were children, The mornings were lavender And everything smelled of lilacs. When it rained, we copied pictures From Grimm\u27s Fairy Tales..

    The Misadventure

    Get PDF
    T REMEMBER afternoons on the terrace by the sea. I •*• would sit and read. Sometimes, I would pick a conversation out of the murmur of voices. I\u27d eavesdrop up to a half-hour on the more interesting ones. As the summer wore on, a lot of the faces became pretty familiar. We\u27d nod, somewhat hesitantly, as familiar strangers tend to do..

    Hail--and Farewell

    Get PDF

    Thermal/environmental barrier coating system for silicon-based materials

    Get PDF
    A coating system for a substrate containing a silicon-based material, such as silicon carbide-containing ceramic matrix materials containing silicon carbide and used to form articles exposed to high temperatures, including the hostile thermal environment of a gas turbine engine. The coating system includes a layer of barium strontium aluminosilicate (BSAS) as a bond coat for a thermal-insulating top coat. As a bond coat, the BSAS layer serves to adhere the top coat to a SiC-containing substrate. The BSAS bond coat exhibits sufficient environmental resistance such that, if the top coat should spall, the BSAS bond coat continues to provide a level of environmental protection to the underlying SiC-containing substrate

    Method for thermally spraying crack-free mullite coatings on ceramic-based substrates

    Get PDF
    A process for depositing a mullite coating on a silicon-based material, such as those used to form articles exposed to high temperatures and including the hostile thermal environment of a gas turbine engine. The process is generally to thermally spray a mullite powder to form a mullite layer on a substrate, in which the thermal spraying process is performed so that the mullite powder absorbs a sufficient low level of energy from the thermal source to prevent evaporation of silica from the mullite powder. Processing includes deposition parameter adjustments or annealing to maintain or reestablish phase equilibrium in the mullite layer, so that through-thickness cracks in the mullite layer are avoided

    Preparation of low-sulfur platinum and platinum aluminide layers in thermal barrier coatings

    Get PDF
    A method for preparing a coated nickel-base superalloy article reduces the sulfur content of the surface region of the metallic coating layers to low levels, thereby improving the adhesion of the coating layers to the article. The method includes depositing a first layer of platinum overlying the surface of a substrate, depositing a second layer of aluminum over the platinum, and final desulfurizing the article by heating the article to elevated temperature, preferably in hydrogen, and removing a small amount of material from the surface that was exposed during the step of heating. A ceramic layer may be deposited over the desulfurized article. The article may also be similarly desulfurized at other points in the fabrication procedure

    Method of depositing a coating on Si-based ceramic composites

    Get PDF
    A process of depositing a coating system suitable for use as an environmental barrier coating on various substrate materials, particularly those containing silicon and intended for high temperature applications such as the hostile thermal environment of a gas turbine engine. The process comprises depositing a first coating layer containing mullite, and preferably a second coating layer of an alkaline earth aluminosilicate, such as barium-strontium-aluminosilicate (BSAS), by thermal spraying while maintaining the substrate at a temperature of 800.degree. C. or less, preferably 500.degree. C. or less, by which a substantially crack-free coating system is produced with desirable mechanical integrity

    Silicon based substrate with environmental/ thermal barrier layer

    Get PDF
    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate

    Oxidation behaviour of SiC/SiC ceramic matrix composites in air

    Get PDF
    Oxidation of silicon melt infiltrated SiC/SiC ceramic matrix composites (CMC) was studied in air at 1200–1400 °C for 1, 5, 24 and 48 h. Weight gain and oxide layer thickness measurements revealed the oxidation follows parabolic reaction kinetics with increase in temperature and time. XRD showed the extent of oxide layer (SiO2) formation was greatest after 48 h at 1400 °C: an observation confirmed by X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) analyses. Oxide layer thickness varied from 1 μm after 48 h at 1200 °C to 8 μm after 48 h at 1400 °C. Oxidation of SiC/SiC composites is both temperature and time dependent with an activation energy of 619 kJ mol−1. BN coatings around SiC fibres showed good resistance to oxidation even after 48 h at 1400 °C
    • …
    corecore