653 research outputs found

    New chemical evolution analytical solutions including environment effects

    Full text link
    In the last years, more and more interest has been devoted to analytical solutions, including inflow and outflow, to study the metallicity enrichment in galaxies. In this framework, we assume a star formation rate which follows a linear Schmidt law, and we present new analytical solutions for the evolution of the metallicity (Z) in galaxies. In particular, we take into account environmental effects including primordial and enriched gas infall, outflow, different star formation efficiencies, and galactic fountains. The enriched infall is included to take into account galaxy-galaxy interactions. Our main results can be summarized as: i) when a linear Schmidt law of star formation is assumed, the resulting time evolution of the metallicity Z is the same either for a closed-box model or for an outflow model. ii) The mass-metallicity relation for galaxies which suffer a chemically enriched infall, originating from another evolved galaxy with no pre-enriched gas, is shifted down in parallel at lower Z values, if compared the closed box model. iii) When a galaxy suffers at the same time a primordial infall and a chemically enriched one, the primordial infall always dominates the chemical evolution. iv) We present new solutions for the metallicity evolution in a galaxy which suffers galactic fountains and an enriched infall from another galaxy at the same time. The analytical solutions presented here can be very important to study the metallicity (oxygen), which is measured in high-redshift objects. These solutions can be very useful: a) in the context of cosmological semi-analytical models for galaxy formation and evolution, and b) for the study of compact groups of galaxies.Comment: Accepted for publication in MNRA

    Chemical Evolution of M31

    Full text link
    We review chemical evolution models developed for M31 as well as the abundance determinations available for this galaxy. Then we present a recent chemical evolution model for M31 including radial gas flows and galactic fountains along the disk, as well as a model for the bulge. Our models are predicting the evolution of the abundances of several chemical species such as H, He, C, N, O, Ne, Mg, Si, S, Ca and Fe. From comparison between model predictions and observations we can derive some constraints on the evolution of the disk and the bulge of M31. We reach the conclusions that Andromeda must have evolved faster than the Milky Way and inside-out, and that its bulge formed much faster than the disk on a timescale \leq 0.5 Gyr. Finally, we present a study where we apply the model developed for the disk of M31 in order to study the probability of finding galactic habitable zones in this galaxy.Comment: To be published in:"Lessons from the Local Group: A Conference in Honour of David Block and Bruce Elmegreen" Editors: Prof. Dr. Kenneth Freeman, Dr. Bruce Elmegreen, Prof. Dr. David Block, Matthew Woolway, Springe

    The Galactic habitable zone around M and FGK stars with chemical evolution models with dust

    Full text link
    The Galactic habitable zone is defined as the region with highly enough metallicity to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life surviving to the destructive effects of nearby supernova explosion events. Galactic chemical evolution models can be useful tools for studying the galactic habitable zones in different systems. Our aim here is to find the Galactic habitable zone using chemical evolution models for the Milky Way disc, adopting the most recent prescriptions for the evolution of dust and for the probability of finding planetary systems around M and FGK stars. Moreover, for the first time, we will express those probabilities in terms of the dust-to-gas ratio of the ISM in the solar neighborhood as computed by detailed chemical evolution models. At a fixed Galactic time and Galactocentric distance we determine the number of M and FGK stars having Earths (but no gas giant planets) which survived supernova explosions, using the formalism of our Paper I. The probabilities of finding terrestrial planets but not gas giant planets around M stars deviate substantially from the ones around FGK stars for supersolar values of [Fe/H]. For both FGK and M stars the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic Centre, if destructive effects by supernova explosions are taken into account. At the present time the total number of M stars with habitable planets are \simeq 10 times the number of FGK stars. Moreover, we provide a sixth order polynomial fit (and a linear one but more approximated) for the relation found with chemical evolution models in the solar neighborhood between the [Fe/H] abundances and the dust-to-gas ratio.Comment: Accepted for publication in A&A, 10 pages 6 figure

    Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures

    Get PDF
    In this paper we study metastability in large volumes at low temperatures. We consider both Ising spins subject to Glauber spin-flip dynamics and lattice gas particles subject to Kawasaki hopping dynamics. Let \b denote the inverse temperature and let \L_\b \subset \Z^2 be a square box with periodic boundary conditions such that \lim_{\b\to\infty}|\L_\b|=\infty. We run the dynamics on \L_\b starting from a random initial configuration where all the droplets (= clusters of plus-spins, respectively, clusters of particles)are small. For large \b, and for interaction parameters that correspond to the metastable regime, we investigate how the transition from the metastable state (with only small droplets) to the stable state (with one or more large droplets) takes place under the dynamics. This transition is triggered by the appearance of a single \emph{critical droplet} somewhere in \L_\b. Using potential-theoretic methods, we compute the \emph{average nucleation time} (= the first time a critical droplet appears and starts growing) up to a multiplicative factor that tends to one as \b\to\infty. It turns out that this time grows as Ke^{\Gamma\b}/|\L_\b| for Glauber dynamics and K\b e^{\Gamma\b}/|\L_\b| for Kawasaki dynamics, where Γ\Gamma is the local canonical, respectively, grand-canonical energy to create a critical droplet and KK is a constant reflecting the geometry of the critical droplet, provided these times tend to infinity (which puts a growth restriction on |\L_\b|). The fact that the average nucleation time is inversely proportional to |\L_\b| is referred to as \emph{homogeneous nucleation}, because it says that the critical droplet for the transition appears essentially independently in small boxes that partition \L_\b.Comment: 45 pages, 11 figure

    The connection between the Galactic halo and ancient Dwarf Satellites

    Full text link
    We explore the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the Milky Way have been the building blocks of the Galactic halo by comparing their [O/Fe] and [Ba/Fe] versus [Fe/H] patterns with the ones observed in Galactic halo stars. Oxygen abundances deviate substantially from the observed abundances in the Galactic halo stars for [Fe/H] values larger than -2 dex, while they overlap for lower metallicities. On the other hand, for the [Ba/Fe] ratio the discrepancy is extended at all [Fe/H] values, suggesting that the majority of stars in the halo are likely to have been formed in situ. Therefore, we suggest that [Ba/Fe] ratios are a better diagnostic than [O/Fe] ratios. Moreover, we show the effects of an enriched infall of gas with the same chemical abundances as the matter ejected and/or stripped from dwarf satellites of the Milky Way on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the assumed infall time scale, and the presence of a threshold in the gas for star formation.Comment: To appear in Proceeding of Science: Frontier Research in Astrophysics - II 23-28 May 2016 Mondello (Palermo), Ital

    ISM Simulations: An Overview of Models

    Get PDF
    Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.Comment: Overview paper (3 pages) presented by M. Avillez at the Special Session "Modern views of the interstellar medium", XXVIIIth IAU General Assembly, August 27-30, 2012, Beijing. Chin

    Competitive nucleation in metastable systems

    Full text link
    Metastability is observed when a physical system is close to a first order phase transition. In this paper the metastable behavior of a two state reversible probabilistic cellular automaton with self-interaction is discussed. Depending on the self-interaction, competing metastable states arise and a behavior very similar to that of the three state Blume-Capel spin model is found

    The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows

    Full text link
    The galactic habitable zone is defined as the region with sufficient abundance of heavy elements to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life, after surviving to close supernova explosion events. Galactic chemical evolution models can be useful for studying the galactic habitable zones in different systems. We apply detailed chemical evolution models including radial gas flows to study the galactic habitable zones in our Galaxy and M31. We compare the results to the relative galactic habitable zones found with "classical" (independent ring) models, where no gas inflows were included. For both the Milky Way and Andromeda, the main effect of the gas radial inflows is to enhance the number of stars hosting a habitable planet with respect to the "classical" model results, in the region of maximum probability for this occurrence, relative to the classical model results. These results are obtained by taking into account the supernova destruction processes. In particular, we find that in the Milky Way the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic center, and the model with radial flows predicts a number which is 38% larger than what predicted by the classical model. For Andromeda we find that the maximum number of stars with habitable planets is at 16 kpc from the center and that in the case of radial flows this number is larger by 10 % relative to the stars predicted by the classical model.Comment: Accepted by MNRA
    corecore